summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--library/topology/urysohn2.tex68
1 files changed, 26 insertions, 42 deletions
diff --git a/library/topology/urysohn2.tex b/library/topology/urysohn2.tex
index e963951..7f98bc2 100644
--- a/library/topology/urysohn2.tex
+++ b/library/topology/urysohn2.tex
@@ -104,8 +104,11 @@
\end{definition}
-
-
+\begin{proposition}\label{iff_sequence}
+ Suppose $X$ is a function.
+ Suppose $\dom{X} \subseteq \naturals$.
+ Then $X$ is a sequence.
+\end{proposition}
@@ -121,6 +124,9 @@
Suppose $\carrier[X]$ is inhabited.
There exist $U \subseteq \carrier[X]$ such that $U$ is closed in $X$ and $\closure{A}{X} \subseteq \interior{U}{X} \subseteq \closure{U}{X} \subseteq \interior{B}{X}$.
\end{theorem}
+\begin{proof}
+ Omitted.
+\end{proof}
\begin{theorem}\label{urysohn}
@@ -132,48 +138,26 @@
and $f(A) = \zero$ and $f(B)= 1$ and $f$ is continuous.
\end{theorem}
\begin{proof}
-
- Let $H = \carrier[X] \setminus B$.
- Let $P = \{x \in \pow{X} \mid x = A \lor x = H \lor (x \in \pow{X} \land (\closure{A}{X} \subseteq \interior{U}{X} \subseteq \closure{U}{X} \subseteq \interior{H}{X}))\}$.
- Let $\eta = \carrier[X]$.
-
-
- % Provable
- % vvv
- Define $F : \eta \to \reals$ such that $F(x) =$
+ Let $X' = \carrier[X]$.
+ Let $N = \{\zero, 1\}$.
+ $1 = \suc{\zero}$.
+ $1 \in \naturals$ and $\zero \in \naturals$.
+ $N \subseteq \naturals$.
+ Let $A' = (X' \setminus B)$.
+ $B \subseteq X'$ by \cref{powerset_elim,closeds}.
+ $A \subseteq X'$.
+ Therefore $A \subseteq A'$.
+ Define $U_0: N \to \{A, A'\}$ such that $U_0(n) =$
\begin{cases}
- & \zero &\text{if} x \in A\\
- & \rfrac{1}{1+1} &\text{if} x \in (\carrier[X] \setminus (A \union B))\\
- & 1 &\text{if} x \in B
+ &A &\text{if} n = \zero \\
+ &A' &\text{if} n = 1
\end{cases}
-
- %Define $f : \naturals \to \pow{P}$ such that $f(x)=$
- %\begin{cases}
- % & \emptyset & \text{if} x = \zero \\
- % & \{A, H\} & \text{if} x = 1 \\
- % & G & \text{if} x \in (\naturals \setminus \{1, \zero\}) \land G = \{g \in \pow{P} \mid g \in f(n-1) \lor (g \notin f(n-1) \land g \in P) \}
- %\end{cases}
-
- %Let $D = \{d \mid d \in \rationals \mid \zero \leq d \leq 1\}$.
- %Take $R$ such that for all $q \in D$ we have for all $S \in P$ we have $q \mathrel{R} S$ iff
- % $q = \zero \land S = A$ or $q = 1 \land S = H$ or
- % for all $q_1, q_2, S_1, S_2$
- % such that $q_1 \leq q \leq q_2$ and $q_1 \mathrel{R} S_1$ and $q_2 \mathrel{R} S_2$
- % we have $\closure{S_1}{X} \subseteq \interior{S}{X} \subseteq \closure{S}{X} \subseteq \interior{S_2}{X}$
- % and $q \mathrel{R} S$.
-
-
-
- %Let $J = \{(n,f) \mid n denots the cardinality of a urysohn chain on which f is a staircase function\}$.
-%
- %Let $N = \naturals$.
- %Define $j : N \to \funs{\carrier[X]}{\eals}$ such that $j(n) =$
- %\begin{cases}
- % & f &\text{if} n \in N \land \exist w \in J. J=(n,f)
- %\end{cases}
-
-
-
+ $U_0$ is a function.
+ $\dom{U_0} = N$.
+ $\dom{U_0} \subseteq \naturals$ by \cref{ran_converse}.
+ $U_0$ is a sequence.
+ $U_0$ is a chain of subsets in $X'$.
+ $U_0$ is a urysohnchain of $X$.