summaryrefslogtreecommitdiff
path: root/library/topology/urysohn2.tex
blob: 7f98bc269a08888fc6b81e7fdcd8c046c7de38f3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
\import{topology/topological-space.tex}
\import{topology/separation.tex}
\import{topology/continuous.tex}
\import{topology/basis.tex}
\import{numbers.tex}
\import{function.tex}
\import{set.tex}
\import{cardinal.tex}
\import{relation.tex}
\import{relation/uniqueness.tex}
\import{set/cons.tex}
\import{set/powerset.tex}
\import{set/fixpoint.tex}
\import{set/product.tex}

\section{Urysohns Lemma}

\begin{definition}\label{minimum}
    $\min{X} = \{x \in X \mid \forall y \in X. x \leq y \}$.
\end{definition}


\begin{definition}\label{maximum}
    $\max{X} = \{x \in X \mid \forall y \in X. x \geq y \}$.
\end{definition}


\begin{definition}\label{intervalclosed}
    $\intervalclosed{a}{b} = \{x \in \reals \mid a \leq x \leq b\}$.
\end{definition}


\begin{definition}\label{intervalopen}
    $\intervalopen{a}{b} = \{ x \in \reals \mid a < x < b\}$.
\end{definition}


\begin{definition}\label{one_to_n_set}
    $\seq{m}{n} = \{x \in \naturals \mid  m \leq x \leq n\}$.   
\end{definition}


\begin{definition}\label{sequence}
    $X$ is a sequence iff $X$ is a function and $\dom{f} \subseteq \naturals$.
\end{definition}


\begin{abbreviation}\label{urysohnspace}
    $X$ is a urysohn space iff
    $X$ is a topological space and
    for all $A,B \in \closeds{X}$ such that $A \inter B = \emptyset$
    we have there exist $A',B' \in \opens[X]$
    such that  $A \subseteq A'$ and $B \subseteq B'$ and $A' \inter B' = \emptyset$.    
\end{abbreviation}


\begin{abbreviation}\label{at}
    $\at{f}{n} = f(n)$.
\end{abbreviation}


\begin{definition}\label{chain_of_subsets}
    $X$ is a chain of subsets in $Y$ iff $X$ is a sequence and for all $n \in \dom{X}$ we have $\at{X}{n} \subseteq \carrier[Y]$. 
\end{definition}


\begin{definition}\label{urysohnchain}%<-- zulässig
    $X$ is a urysohnchain of $Y$ iff $X$ is a chain of subsets in $Y$ and for all $n,m \in \dom{X}$ such that $n < m$ we have $\closure{\at{X}{n}}{Y} \subseteq \interior{\at{X}{m}}{Y}$.
\end{definition}


\begin{definition}\label{finer} %<-- verfeinerung 
    $X$ is finer then $Y$ in $U$ iff for all $n \in \dom{X}$ we have $\at{X}{n} \in \ran{Y}$ and for all $m \in \dom{X}$ such that $n < m$ we have there exist $k \in \dom{Y}$ such that $ \closure{\at{X}{n}}{U} \subseteq \interior{\at{Y}{k}}{U} \subseteq \closure{\at{Y}{k}}{U} \subseteq \interior{\at{X}{m}}{U}$.
\end{definition}


\begin{definition}\label{sequence_of_reals}
    $X$ is a sequence of reals iff $\ran{X} \subseteq \reals$.
\end{definition}


\begin{axiom}\label{abs_behavior1}
    If $x \geq \zero$ then $\abs{x} = x$.
\end{axiom}

\begin{axiom}\label{abs_behavior2}
    If $x < \zero$ then $\abs{x} = \neg{x}$.
\end{axiom}

\begin{definition}\label{realsminus}
    $\realsminus = \{r \in \reals \mid r < \zero\}$.
\end{definition}

\begin{definition}\label{realsplus}
    $\realsplus = \reals \setminus \realsminus$.
\end{definition}

\begin{definition}\label{epsilon_ball}
    $\epsBall{x}{\epsilon} = \intervalopen{x-\epsilon}{x+\epsilon}$.
\end{definition}

\begin{definition}\label{pointwise_convergence}
    $X$ converge to $x$ iff for all $\epsilon \in \realsplus$ there exist $N \in \dom{X}$ such that for all $n \in \dom{X}$ such that $n > N$ we have $\at{X}{n} \in \epsBall{x}{\epsilon}$.
\end{definition}


\begin{proposition}\label{iff_sequence}
    Suppose $X$ is a function.
    Suppose $\dom{X} \subseteq \naturals$.
    Then $X$ is a sequence.
\end{proposition}








\begin{theorem}\label{urysohnsetinbeetween}
    Let $X$ be a urysohn space.
    Suppose $A,B \in \closeds{X}$.
    Suppose $\closure{A}{X} \subseteq \interior{B}{X}$.
    Suppose $\carrier[X]$ is inhabited.
    There exist $U \subseteq \carrier[X]$ such that $U$ is closed in $X$ and $\closure{A}{X} \subseteq \interior{U}{X} \subseteq \closure{U}{X} \subseteq \interior{B}{X}$.
\end{theorem}
\begin{proof}
    Omitted.
\end{proof}


\begin{theorem}\label{urysohn}
    Let $X$ be a urysohn space.
    Suppose $A,B \in \closeds{X}$.
    Suppose $A \inter B$ is empty.
    Suppose $\carrier[X]$ is inhabited.
    There exist $f$ such that $f \in \funs{\carrier[X]}{\intervalclosed{\zero}{1}}$ 
    and $f(A) = \zero$ and $f(B)= 1$ and $f$ is continuous.
\end{theorem}
\begin{proof}
    Let $X' = \carrier[X]$.
    Let $N = \{\zero, 1\}$.
    $1 = \suc{\zero}$.
    $1 \in \naturals$ and $\zero \in \naturals$.
    $N \subseteq \naturals$.
    Let $A' = (X' \setminus B)$.
    $B \subseteq X'$ by \cref{powerset_elim,closeds}.
    $A \subseteq X'$.
    Therefore $A \subseteq A'$.
    Define $U_0: N \to \{A, A'\}$ such that $U_0(n) =$
    \begin{cases}
        &A  &\text{if} n = \zero \\
        &A' &\text{if} n = 1
    \end{cases}
    $U_0$ is a function.
    $\dom{U_0} = N$.
    $\dom{U_0} \subseteq \naturals$ by \cref{ran_converse}. 
    $U_0$ is a sequence.
    $U_0$ is a chain of subsets in $X'$.
    $U_0$ is a urysohnchain of $X$.





    
\end{proof}

\begin{theorem}\label{safe}
    Contradiction.     
\end{theorem}




%
%Ideen:
%Eine folge ist ein Funktion mit domain \subseteq Natürlichenzahlen. als predicat
%
%zulässig und verfeinerung von ketten als predicat definieren. 
%
%limits und punkt konvergenz als prädikat.
%
%
%Vor dem Beweis vor dem eigentlichen Beweis.
%die abgeleiteten Funktionen
%
%\derivedstiarcasefunction on A
%
%abbreviation: \at{f}{n} = f_{n}
%
%
%TODO:
%Reals ist ein topologischer Raum
%