diff options
| author | Simon-Kor <52245124+Simon-Kor@users.noreply.github.com> | 2024-08-31 18:45:44 +0200 |
|---|---|---|
| committer | Simon-Kor <52245124+Simon-Kor@users.noreply.github.com> | 2024-08-31 18:45:44 +0200 |
| commit | 8cc2f8557d68c492cd0327f2f49051ff0a7b0f6a (patch) | |
| tree | 8687bdf6ade037a8ffeeb3275d52ab629ca0628c /library/topology/urysohn2.tex | |
| parent | 26cf156763f71aaa9f638408ba4bffb85b886ab0 (diff) | |
Contradiction in sequence
False can be proven with
iff_sequence, codom_of_emptyset_can_be_anything,sequence,
emptyset_is_function_on_emptyset,id_dom,in_irrefl,
suc_subseteq_implies_in,emptyset_subseteq
Diffstat (limited to 'library/topology/urysohn2.tex')
| -rw-r--r-- | library/topology/urysohn2.tex | 68 |
1 files changed, 26 insertions, 42 deletions
diff --git a/library/topology/urysohn2.tex b/library/topology/urysohn2.tex index e963951..7f98bc2 100644 --- a/library/topology/urysohn2.tex +++ b/library/topology/urysohn2.tex @@ -104,8 +104,11 @@ \end{definition} - - +\begin{proposition}\label{iff_sequence} + Suppose $X$ is a function. + Suppose $\dom{X} \subseteq \naturals$. + Then $X$ is a sequence. +\end{proposition} @@ -121,6 +124,9 @@ Suppose $\carrier[X]$ is inhabited. There exist $U \subseteq \carrier[X]$ such that $U$ is closed in $X$ and $\closure{A}{X} \subseteq \interior{U}{X} \subseteq \closure{U}{X} \subseteq \interior{B}{X}$. \end{theorem} +\begin{proof} + Omitted. +\end{proof} \begin{theorem}\label{urysohn} @@ -132,48 +138,26 @@ and $f(A) = \zero$ and $f(B)= 1$ and $f$ is continuous. \end{theorem} \begin{proof} - - Let $H = \carrier[X] \setminus B$. - Let $P = \{x \in \pow{X} \mid x = A \lor x = H \lor (x \in \pow{X} \land (\closure{A}{X} \subseteq \interior{U}{X} \subseteq \closure{U}{X} \subseteq \interior{H}{X}))\}$. - Let $\eta = \carrier[X]$. - - - % Provable - % vvv - Define $F : \eta \to \reals$ such that $F(x) =$ + Let $X' = \carrier[X]$. + Let $N = \{\zero, 1\}$. + $1 = \suc{\zero}$. + $1 \in \naturals$ and $\zero \in \naturals$. + $N \subseteq \naturals$. + Let $A' = (X' \setminus B)$. + $B \subseteq X'$ by \cref{powerset_elim,closeds}. + $A \subseteq X'$. + Therefore $A \subseteq A'$. + Define $U_0: N \to \{A, A'\}$ such that $U_0(n) =$ \begin{cases} - & \zero &\text{if} x \in A\\ - & \rfrac{1}{1+1} &\text{if} x \in (\carrier[X] \setminus (A \union B))\\ - & 1 &\text{if} x \in B + &A &\text{if} n = \zero \\ + &A' &\text{if} n = 1 \end{cases} - - %Define $f : \naturals \to \pow{P}$ such that $f(x)=$ - %\begin{cases} - % & \emptyset & \text{if} x = \zero \\ - % & \{A, H\} & \text{if} x = 1 \\ - % & G & \text{if} x \in (\naturals \setminus \{1, \zero\}) \land G = \{g \in \pow{P} \mid g \in f(n-1) \lor (g \notin f(n-1) \land g \in P) \} - %\end{cases} - - %Let $D = \{d \mid d \in \rationals \mid \zero \leq d \leq 1\}$. - %Take $R$ such that for all $q \in D$ we have for all $S \in P$ we have $q \mathrel{R} S$ iff - % $q = \zero \land S = A$ or $q = 1 \land S = H$ or - % for all $q_1, q_2, S_1, S_2$ - % such that $q_1 \leq q \leq q_2$ and $q_1 \mathrel{R} S_1$ and $q_2 \mathrel{R} S_2$ - % we have $\closure{S_1}{X} \subseteq \interior{S}{X} \subseteq \closure{S}{X} \subseteq \interior{S_2}{X}$ - % and $q \mathrel{R} S$. - - - - %Let $J = \{(n,f) \mid n denots the cardinality of a urysohn chain on which f is a staircase function\}$. -% - %Let $N = \naturals$. - %Define $j : N \to \funs{\carrier[X]}{\eals}$ such that $j(n) =$ - %\begin{cases} - % & f &\text{if} n \in N \land \exist w \in J. J=(n,f) - %\end{cases} - - - + $U_0$ is a function. + $\dom{U_0} = N$. + $\dom{U_0} \subseteq \naturals$ by \cref{ran_converse}. + $U_0$ is a sequence. + $U_0$ is a chain of subsets in $X'$. + $U_0$ is a urysohnchain of $X$. |
