diff options
Diffstat (limited to 'library/algebra/group.tex')
| -rw-r--r-- | library/algebra/group.tex | 10 |
1 files changed, 10 insertions, 0 deletions
diff --git a/library/algebra/group.tex b/library/algebra/group.tex index a79bd2f..7de1051 100644 --- a/library/algebra/group.tex +++ b/library/algebra/group.tex @@ -80,3 +80,13 @@ \begin{definition}\label{group_automorphism} Let $f$ be a function. $f$ is a group-automorphism iff $G$ is a group and $\dom{f}=G$ and $\ran{f}=G$. \end{definition} + +\begin{definition}\label{trivial_group} + $G$ is the trivial group iff $G$ is a group and $\{\neutral[G]\}=G$. +\end{definition} + +\begin{theorem}\label{trivial_implies_abelian} + Let $G$ be a group. + Suppose $G$ is the trivial group. + Then $G$ is an abelian group. +\end{theorem} |
