summaryrefslogtreecommitdiff
path: root/library/algebra
diff options
context:
space:
mode:
Diffstat (limited to 'library/algebra')
-rw-r--r--library/algebra/group.tex10
1 files changed, 10 insertions, 0 deletions
diff --git a/library/algebra/group.tex b/library/algebra/group.tex
index a79bd2f..7de1051 100644
--- a/library/algebra/group.tex
+++ b/library/algebra/group.tex
@@ -80,3 +80,13 @@
\begin{definition}\label{group_automorphism}
Let $f$ be a function. $f$ is a group-automorphism iff $G$ is a group and $\dom{f}=G$ and $\ran{f}=G$.
\end{definition}
+
+\begin{definition}\label{trivial_group}
+ $G$ is the trivial group iff $G$ is a group and $\{\neutral[G]\}=G$.
+\end{definition}
+
+\begin{theorem}\label{trivial_implies_abelian}
+ Let $G$ be a group.
+ Suppose $G$ is the trivial group.
+ Then $G$ is an abelian group.
+\end{theorem}