summaryrefslogtreecommitdiff
path: root/library/algebra/quasigroup.tex
diff options
context:
space:
mode:
Diffstat (limited to 'library/algebra/quasigroup.tex')
-rw-r--r--library/algebra/quasigroup.tex36
1 files changed, 36 insertions, 0 deletions
diff --git a/library/algebra/quasigroup.tex b/library/algebra/quasigroup.tex
new file mode 100644
index 0000000..747ab03
--- /dev/null
+++ b/library/algebra/quasigroup.tex
@@ -0,0 +1,36 @@
+\import{algebra/magma.tex}
+
+\section{Quasigroups}
+
+\begin{struct}\label{quasigroup}
+ A quasigroup $A$ is a magma equipped with
+ \begin{enumerate}
+ \item $\ldiv$
+ \item $\rdiv$
+ \end{enumerate}
+ such that
+ \begin{enumerate}
+ \item for all $a, b\in A$ we have $\ldiv (a,b)\in A$.
+ \item for all $a, b\in A$ we have $\rdiv (a,b)\in A$.
+ \item for all $a,b \in A$ we have $b = \mul(a,\ldiv (a,b))$.
+ \item for all $a,b \in A$ we have $b = \ldiv(a,\mul (a,b))$.
+ \item for all $a,b \in A$ we have $b = \mul(\rdiv (b,a),a)$.
+ \item for all $a,b \in A$ we have $b = \rdiv(\mul (b,a),a)$.
+ \end{enumerate}
+\end{struct}
+
+% Cancelling an element on the left.
+\begin{lemma}\label{quasigroup_cancel_left}
+ Let $A$ be a quasigroup.
+ Let $a,b,c \in A$.
+ Suppose $\mul(a,b) = \mul(a,c)$.
+ Then $b = c$.
+\end{lemma}
+
+% Cancelling an element on the right.
+\begin{lemma}\label{quasigroup_cancel_right}
+ Let $A$ be a quasigroup.
+ Let $a,b,c \in A$.
+ Suppose $\mul(a,c) = \mul(b,c)$.
+ Then $a = b$.
+\end{lemma}