summaryrefslogtreecommitdiff
path: root/library/algebra
diff options
context:
space:
mode:
Diffstat (limited to 'library/algebra')
-rw-r--r--library/algebra/group.tex1
-rw-r--r--library/algebra/loop.tex7
-rw-r--r--library/algebra/magma.tex100
-rw-r--r--library/algebra/quasigroup.tex36
-rw-r--r--library/algebra/semigroup.tex82
5 files changed, 226 insertions, 0 deletions
diff --git a/library/algebra/group.tex b/library/algebra/group.tex
new file mode 100644
index 0000000..48934bd
--- /dev/null
+++ b/library/algebra/group.tex
@@ -0,0 +1 @@
+\section{Groups}
diff --git a/library/algebra/loop.tex b/library/algebra/loop.tex
new file mode 100644
index 0000000..338985c
--- /dev/null
+++ b/library/algebra/loop.tex
@@ -0,0 +1,7 @@
+\import{algebra/quasigroup.tex}
+
+\section{Loops}
+
+\begin{struct}\label{loop}
+ A loop $A$ is a quasigroup and a unital magma.
+\end{struct}
diff --git a/library/algebra/magma.tex b/library/algebra/magma.tex
new file mode 100644
index 0000000..6f5ac04
--- /dev/null
+++ b/library/algebra/magma.tex
@@ -0,0 +1,100 @@
+\import{function.tex}
+
+\section{Magmas}
+
+\begin{struct}\label{magma}
+ A magma $A$ is a onesorted structure equipped with
+ \begin{enumerate}
+ \item $\mul$
+ \end{enumerate}
+ such that
+ \begin{enumerate}
+ \item\label{magma_welldef} for all $a, b\in \carrier[A]$ we have $\mul[A](a,b)\in \carrier[A]$.
+ \end{enumerate}
+\end{struct}
+
+\begin{abbreviation}\label{cdot}
+ $a\cdot b = \mul(a,b)$.
+\end{abbreviation}
+
+\begin{abbreviation}\label{idempotentelement}
+ $a$ is an idempotent element of $A$ iff
+ $a\in\carrier[A]$ and
+ $\mul[A](a,a) = a$.
+\end{abbreviation}
+
+
+\begin{definition}\label{idempotents}
+ $\idempotents{A} = \{a\in\carrier[A]\mid \mul[A](a,a) = a\}$.
+\end{definition}
+
+%\begin{definition}\label{rightinternalorbit}
+% $\rightinternalorbit{a}{A} = \{\mul[A](a,a') \mid a'\in\carrier[A]\}$.
+%\end{definition}
+
+\begin{abbreviation}\label{commutes}
+ $a$ commutes with $b$ iff $a\cdot b = b\cdot a$.
+\end{abbreviation}
+
+\begin{definition}\label{submagma}
+ $A$ is a submagma of $B$ iff
+ $A$ is a magma and
+ $B$ is a magma and
+ $\carrier[A]\subseteq \carrier[B]$ and
+ $\mul[A]\subseteq \mul[B]$.
+\end{definition}
+
+\begin{proposition}\label{submagma_transitive}
+ Suppose $A$ is a submagma of $B$.
+ Suppose $B$ is a submagma of $C$.
+ Then $A$ is a submagma of $C$.
+\end{proposition}
+\begin{proof}
+ Follows by \cref{submagma,subseteq_transitive}.
+\end{proof}
+
+\begin{struct}\label{unitalmagma}
+ A unital magma $A$ is a magma equipped with
+ \begin{enumerate}
+ \item $\neutral$
+ \end{enumerate}
+ such that
+ \begin{enumerate}
+ \item\label{unitalmagma_type} $\neutral[A]\in \carrier[A]$.
+ \item\label{unitalmagma_right} for all $a\in \carrier[A]$ we have $\mul[A](a,\neutral[A]) = a$.
+ \item\label{unitalmagma_left} for all $a\in \carrier[A]$ we have $\mul[A](\neutral[A], a) = a$.
+ \end{enumerate}
+\end{struct}
+
+\begin{proposition}\label{unitalmagma_mul_neutral_neutral}
+ Let $A$ be a unital magma.
+ Then $\mul(\neutral,\neutral) = \neutral$.
+\end{proposition}
+
+\begin{proposition}\label{unitalmagma_neutral_unique}
+ Let $A$ be a unital magma.
+ Let $e$ be a set such that $e\in A$ and for all $x\in A$ we have $\mul(x, e) = x = \mul(e, x)$.
+ Then $e = \neutral$.
+\end{proposition}
+\begin{proof}
+ Follows by \cref{unitalmagma_type,unitalmagma_left}.
+\end{proof}
+
+
+
+\begin{definition}[Left orbit]\label{left_orbit}
+ $\LeftOrb{x}{A} = \{\mul[A](a,x) \mid a\in\carrier[A] \}$.
+\end{definition}
+
+\begin{proposition}\label{eq_left_orbit_witness}
+ Let $A$ be a magma.
+ Let $e,f\in\carrier[A]$.
+ Suppose $\LeftOrb{e}{A} = \LeftOrb{f}{A}$.
+ Let $x\in\carrier[A]$.
+ Then there exists $y\in\carrier[A]$ such that $x\cdot e = y\cdot f$.
+\end{proposition}
+\begin{proof}
+ We have $x\cdot e\in \LeftOrb{e}{A}$ by \cref{left_orbit}.
+ Thus $x\cdot e\in\LeftOrb{f}{A}$ by assumption.
+ Take $y\in\carrier[A]$ such that $x\cdot e = y\cdot f$ by \cref{left_orbit}.
+\end{proof}
diff --git a/library/algebra/quasigroup.tex b/library/algebra/quasigroup.tex
new file mode 100644
index 0000000..747ab03
--- /dev/null
+++ b/library/algebra/quasigroup.tex
@@ -0,0 +1,36 @@
+\import{algebra/magma.tex}
+
+\section{Quasigroups}
+
+\begin{struct}\label{quasigroup}
+ A quasigroup $A$ is a magma equipped with
+ \begin{enumerate}
+ \item $\ldiv$
+ \item $\rdiv$
+ \end{enumerate}
+ such that
+ \begin{enumerate}
+ \item for all $a, b\in A$ we have $\ldiv (a,b)\in A$.
+ \item for all $a, b\in A$ we have $\rdiv (a,b)\in A$.
+ \item for all $a,b \in A$ we have $b = \mul(a,\ldiv (a,b))$.
+ \item for all $a,b \in A$ we have $b = \ldiv(a,\mul (a,b))$.
+ \item for all $a,b \in A$ we have $b = \mul(\rdiv (b,a),a)$.
+ \item for all $a,b \in A$ we have $b = \rdiv(\mul (b,a),a)$.
+ \end{enumerate}
+\end{struct}
+
+% Cancelling an element on the left.
+\begin{lemma}\label{quasigroup_cancel_left}
+ Let $A$ be a quasigroup.
+ Let $a,b,c \in A$.
+ Suppose $\mul(a,b) = \mul(a,c)$.
+ Then $b = c$.
+\end{lemma}
+
+% Cancelling an element on the right.
+\begin{lemma}\label{quasigroup_cancel_right}
+ Let $A$ be a quasigroup.
+ Let $a,b,c \in A$.
+ Suppose $\mul(a,c) = \mul(b,c)$.
+ Then $a = b$.
+\end{lemma}
diff --git a/library/algebra/semigroup.tex b/library/algebra/semigroup.tex
new file mode 100644
index 0000000..e090a56
--- /dev/null
+++ b/library/algebra/semigroup.tex
@@ -0,0 +1,82 @@
+\import{algebra/magma.tex}
+
+\section{Semigroups}
+
+\begin{struct}\label{semigroup}
+ A semigroup $A$ is a magma such that
+ \begin{enumerate}
+ %\item for all $a, b, c\in \carrier[A]$ we have $\mul[A](a,\mul[A](b,c)) = \mul[A](\mul[A](a,b),c)$.
+ \item\label{semigroup_assoc} for all $a, b, c$ we have $\mul[A](a,\mul[A](b,c)) = \mul[A](\mul[A](a,b),c)$.
+ \end{enumerate}
+\end{struct}
+
+
+
+\section{Regular semigroups}
+
+
+\begin{struct}\label{regularsemigroup}
+ A regular semigroup $A$ is a semigroup such that
+ \begin{enumerate}
+ %\item for all $a\in \carrier[A]$ there exists $b\in\carrier[A]$ such that $\mul[A](a, \mul[A](b, a)) = a$.
+ \item\label{regularsemigroup_regular} for all $a$ there exists $b\in\carrier[A]$ such that $\mul[A](a, \mul[A](b, a)) = a$.
+ \end{enumerate}
+\end{struct}
+
+
+
+\section{Inverse semigroups}
+
+\begin{struct}\label{inversesemigroup}
+ An inverse semigroup $A$ is a regular semigroup such that
+ \begin{enumerate}
+ \item\label{inversesemigroup_comm} for all $a,b\in\idempotents{A}$ we have $\mul[A](a, b) = \mul[A](b, a)$.
+ \end{enumerate}
+\end{struct}
+
+\begin{proposition}\label{inversesemigroup_is_semigroup}
+ Suppose $A$ is an inverse semigroup.
+ Then $A$ is a semigroup.
+\end{proposition}
+
+
+\begin{proposition}\label{inversesemigroup_is_regularsemigroup}
+ Suppose $A$ is an inverse semigroup.
+ Then $A$ is a regular semigroup.
+\end{proposition}
+
+\begin{proposition}\label{idempotentelems_eq_iff_orbits_eq}
+ Let $A$ be an inverse semigroup.
+ Let $e,f\in\idempotents{A}$.
+ % TODO use Orbits explicitly?
+ Suppose for all $x\in\carrier[A]$ there exists $y\in\carrier[A]$
+ such that $x\cdot e = y\cdot f$.
+ Suppose for all $x\in\carrier[A]$ there exists $y\in\carrier[A]$
+ such that $x\cdot f = y\cdot e$.
+ Then $e = f$.
+\end{proposition}
+\begin{proof}
+ Take $x, y\in\carrier[A]$ such that $e = x\cdot f$ and $f = y\cdot e$ by \cref{idempotents}.
+ %
+ \begin{align*}
+ e
+ &= x \cdot f
+ \explanation{by assumption}\\
+ &= x\cdot (f\cdot f)
+ \explanation{by \cref{idempotents}}\\
+ &= (x\cdot f)\cdot f
+ \explanation{by \cref{semigroup_assoc,inversesemigroup_is_semigroup}}\\
+ &= e\cdot f
+ \explanation{by assumption}\\
+ &= f\cdot e
+ \explanation{by \hyperref[inversesemigroup_comm]{commutativity of idempotent elements}}\\
+ &= (y\cdot e)\cdot e
+ \explanation{by assumption}\\
+ &= y\cdot (e\cdot e)
+ \explanation{by \cref{semigroup_assoc,inversesemigroup_is_semigroup}}\\
+ &= y \cdot e
+ \explanation{by \cref{idempotents}}\\
+ &= f
+ \explanation{by assumption}
+ \end{align*}
+\end{proof}