summaryrefslogtreecommitdiff
path: root/library/algebra/semigroup.tex
diff options
context:
space:
mode:
Diffstat (limited to 'library/algebra/semigroup.tex')
-rw-r--r--library/algebra/semigroup.tex82
1 files changed, 82 insertions, 0 deletions
diff --git a/library/algebra/semigroup.tex b/library/algebra/semigroup.tex
new file mode 100644
index 0000000..e090a56
--- /dev/null
+++ b/library/algebra/semigroup.tex
@@ -0,0 +1,82 @@
+\import{algebra/magma.tex}
+
+\section{Semigroups}
+
+\begin{struct}\label{semigroup}
+ A semigroup $A$ is a magma such that
+ \begin{enumerate}
+ %\item for all $a, b, c\in \carrier[A]$ we have $\mul[A](a,\mul[A](b,c)) = \mul[A](\mul[A](a,b),c)$.
+ \item\label{semigroup_assoc} for all $a, b, c$ we have $\mul[A](a,\mul[A](b,c)) = \mul[A](\mul[A](a,b),c)$.
+ \end{enumerate}
+\end{struct}
+
+
+
+\section{Regular semigroups}
+
+
+\begin{struct}\label{regularsemigroup}
+ A regular semigroup $A$ is a semigroup such that
+ \begin{enumerate}
+ %\item for all $a\in \carrier[A]$ there exists $b\in\carrier[A]$ such that $\mul[A](a, \mul[A](b, a)) = a$.
+ \item\label{regularsemigroup_regular} for all $a$ there exists $b\in\carrier[A]$ such that $\mul[A](a, \mul[A](b, a)) = a$.
+ \end{enumerate}
+\end{struct}
+
+
+
+\section{Inverse semigroups}
+
+\begin{struct}\label{inversesemigroup}
+ An inverse semigroup $A$ is a regular semigroup such that
+ \begin{enumerate}
+ \item\label{inversesemigroup_comm} for all $a,b\in\idempotents{A}$ we have $\mul[A](a, b) = \mul[A](b, a)$.
+ \end{enumerate}
+\end{struct}
+
+\begin{proposition}\label{inversesemigroup_is_semigroup}
+ Suppose $A$ is an inverse semigroup.
+ Then $A$ is a semigroup.
+\end{proposition}
+
+
+\begin{proposition}\label{inversesemigroup_is_regularsemigroup}
+ Suppose $A$ is an inverse semigroup.
+ Then $A$ is a regular semigroup.
+\end{proposition}
+
+\begin{proposition}\label{idempotentelems_eq_iff_orbits_eq}
+ Let $A$ be an inverse semigroup.
+ Let $e,f\in\idempotents{A}$.
+ % TODO use Orbits explicitly?
+ Suppose for all $x\in\carrier[A]$ there exists $y\in\carrier[A]$
+ such that $x\cdot e = y\cdot f$.
+ Suppose for all $x\in\carrier[A]$ there exists $y\in\carrier[A]$
+ such that $x\cdot f = y\cdot e$.
+ Then $e = f$.
+\end{proposition}
+\begin{proof}
+ Take $x, y\in\carrier[A]$ such that $e = x\cdot f$ and $f = y\cdot e$ by \cref{idempotents}.
+ %
+ \begin{align*}
+ e
+ &= x \cdot f
+ \explanation{by assumption}\\
+ &= x\cdot (f\cdot f)
+ \explanation{by \cref{idempotents}}\\
+ &= (x\cdot f)\cdot f
+ \explanation{by \cref{semigroup_assoc,inversesemigroup_is_semigroup}}\\
+ &= e\cdot f
+ \explanation{by assumption}\\
+ &= f\cdot e
+ \explanation{by \hyperref[inversesemigroup_comm]{commutativity of idempotent elements}}\\
+ &= (y\cdot e)\cdot e
+ \explanation{by assumption}\\
+ &= y\cdot (e\cdot e)
+ \explanation{by \cref{semigroup_assoc,inversesemigroup_is_semigroup}}\\
+ &= y \cdot e
+ \explanation{by \cref{idempotents}}\\
+ &= f
+ \explanation{by assumption}
+ \end{align*}
+\end{proof}