summaryrefslogtreecommitdiff
path: root/library/topology/basis.tex
diff options
context:
space:
mode:
Diffstat (limited to 'library/topology/basis.tex')
-rw-r--r--library/topology/basis.tex51
1 files changed, 38 insertions, 13 deletions
diff --git a/library/topology/basis.tex b/library/topology/basis.tex
index 6fa9fbd..bd7d15a 100644
--- a/library/topology/basis.tex
+++ b/library/topology/basis.tex
@@ -56,24 +56,52 @@
$\emptyset \in \genOpens{B}{X}$.
\end{lemma}
-\begin{lemma}\label{all_is_in_genopens}
+
+
+\begin{lemma}\label{union_in_genopens}
Assume $B$ is a topological basis for $X$.
- $X \in \genOpens{B}{X}$.
+ Assume $F\subseteq \genOpens{B}{X}$.
+ Then $\unions{F}\in\genOpens{B}{X}$.
\end{lemma}
\begin{proof}
- $B$ covers $X$ by \cref{topological_prebasis_iff_covering_family,topological_basis}.
- $\unions{B} \in \genOpens{B}{X}$.
- $X \subseteq \unions{B}$.
+ We have $\unions{F} \in \pow{X}$.
+
+ Show for all $x\in \unions{F}$ there exists $W \in B$
+ such that $x\in W$ and $W \subseteq \unions{F}$.
+ \begin{subproof}
+ Fix $x \in \unions{F}$.
+ There exists $V \in F$ such that $x \in V$ by \cref{unions_iff}.
+ $V \in \genOpens{B}{X}$.
+ There exists $W \in B$ such that $x \in W \subseteq V$.
+ Then $W \subseteq \unions{F}$.
+ \end{subproof}
+ Then $\unions{F}\in\genOpens{B}{X}$ by \cref{genopens}.
\end{proof}
-\begin{lemma}\label{union_in_genopens}
+\begin{lemma}\label{basis_is_in_genopens}
Assume $B$ is a topological basis for $X$.
- For all $F\subseteq \genOpens{B}{X}$ we have $\unions{F}\in\genOpens{B}{X}$.
+ $B \subseteq \genOpens{B}{X}$.
\end{lemma}
\begin{proof}
- Omitted.
+ We show for all $V \in B$ $V \in \genOpens{B}{X}$.
+ \begin{subproof}
+ Fix $V \in B$.
+ For all $x \in V$ $x \in V \subseteq V$.
+ $V \subseteq X$ by \cref{topological_prebasis_iff_covering_family,topological_basis}.
+ $V \in \pow{X}$.
+ $V \in \genOpens{B}{X}$.
+ \end{subproof}
\end{proof}
+\begin{lemma}\label{all_is_in_genopens}
+ Assume $B$ is a topological basis for $X$.
+ $X \in \genOpens{B}{X}$.
+\end{lemma}
+\begin{proof}
+ $B$ covers $X$ by \cref{topological_prebasis_iff_covering_family,topological_basis}.
+ $\unions{B} \in \genOpens{B}{X}$.
+ $X \subseteq \unions{B}$.
+\end{proof}
\begin{lemma}\label{inters_in_genopens}
Assume $B$ is a topological basis for $X$.
@@ -92,16 +120,13 @@
Then $x\in A,C$.
There exists $V' \in B$ such that $x \in V' \subseteq A$ by \cref{genopens}.
There exists $V'' \in B$ such that $x \in V''\subseteq C$ by \cref{genopens}.
- There exists $W \in B$ such that $x \in W$ and $W \subseteq V'$ and $W \subseteq V''$.
+ There exists $W \in B$ such that $x \in W$ and $W \subseteq V'$ and $W \subseteq V''$ by \cref{topological_basis}.
Show $W \subseteq (A\inter C)$.
\begin{subproof}
- %$W \subseteq v'$ and $W \subseteq V''$.
For all $y \in W$ we have $y \in V'$ and $y \in V''$.
\end{subproof}
\end{subproof}
- %Therefore for all $A, C, x$ such that $A \in \genOpens{B}{X}$ and $C \in \genOpens{B}{X}$ and $x \in (A \inter C)$ we have there exists $W \in B$
- %such that $x\in W$ and $W \subseteq (A\inter C)$.
- $(A\inter C) \in \genOpens{B}{X}$.
+ $(A\inter C) \in \genOpens{B}{X}$ by \cref{genopens}.
\end{proof}