summaryrefslogtreecommitdiff
path: root/library
diff options
context:
space:
mode:
Diffstat (limited to 'library')
-rw-r--r--library/numbers.tex41
-rw-r--r--library/topology/basis.tex51
-rw-r--r--library/topology/metric-space.tex77
3 files changed, 55 insertions, 114 deletions
diff --git a/library/numbers.tex b/library/numbers.tex
index 5dd06da..2451730 100644
--- a/library/numbers.tex
+++ b/library/numbers.tex
@@ -4,8 +4,6 @@
\section{The real numbers}
-%TODO: Implementing Notion for negativ number such as -x.
-
%TODO:
%\inv{} für inverse benutzen. Per Signatur einfüheren und dann axiomatisch absicher
%\cdot für multiklikation verwenden.
@@ -17,11 +15,11 @@
\end{signature}
\begin{signature}
- $x + y$ is a set.
+ $x \add y$ is a set.
\end{signature}
\begin{signature}
- $x \times y$ is a set.
+ $x \rmul y$ is a set.
\end{signature}
\begin{axiom}\label{one_in_reals}
@@ -58,7 +56,7 @@
\end{axiom}
\begin{axiom}\label{reals_axiom_order_def}
- $x < y$ iff there exist $z \in \reals$ such that $\zero < z$ and $x + z = y$.
+ $x < y$ iff there exist $z \in \reals$ such that $\zero < z$ and $x \add z = y$.
\end{axiom}
\begin{lemma}\label{reals_one_bigger_than_zero}
@@ -67,11 +65,11 @@
\begin{axiom}\label{reals_axiom_assoc}
- For all $x,y,z \in \reals$ $(x + y) + z = x + (y + z)$ and $(x \times y) \times z = x \times (y \times z)$.
+ For all $x,y,z \in \reals$ $(x \add y) \add z = x \add (y \add z)$ and $(x \rmul y) \rmul z = x \rmul (y \rmul z)$.
\end{axiom}
\begin{axiom}\label{reals_axiom_kommu}
- For all $x,y \in \reals$ $x + y = y + x$ and $x \times y = y \times x$.
+ For all $x,y \in \reals$ $x \add y = y \add x$ and $x \rmul y = y \rmul x$.
\end{axiom}
\begin{axiom}\label{reals_axiom_zero_in_reals}
@@ -79,32 +77,32 @@
\end{axiom}
\begin{axiom}\label{reals_axiom_zero}
- For all $x \in \reals$ $x + \zero = x$.
+ For all $x \in \reals$ $x \add \zero = x$.
\end{axiom}
\begin{axiom}\label{reals_axiom_one}
- For all $x \in \reals$ $1 \neq \zero$ and $x \times 1 = x$.
+ For all $x \in \reals$ $1 \neq \zero$ and $x \rmul 1 = x$.
\end{axiom}
\begin{axiom}\label{reals_axiom_add_invers}
- For all $x \in \reals$ there exist $y \in \reals$ such that $x + y = \zero$.
+ For all $x \in \reals$ there exist $y \in \reals$ such that $x \add y = \zero$.
\end{axiom}
\begin{axiom}\label{reals_axiom_mul_invers}
- For all $x \in \reals$ such that $x \neq \zero$ there exist $y \in \reals$ such that $x \times y = 1$.
+ For all $x \in \reals$ such that $x \neq \zero$ there exist $y \in \reals$ such that $x \rmul y = 1$.
\end{axiom}
\begin{axiom}\label{reals_axiom_disstro1}
- For all $x,y,z \in \reals$ $x \times (y + z) = (x \times y) + (x \times z)$.
+ For all $x,y,z \in \reals$ $x \rmul (y \add z) = (x \rmul y) \add (x \rmul z)$.
\end{axiom}
\begin{proposition}\label{reals_disstro2}
- For all $x,y,z \in \reals$ $(y + z) \times x = (y \times x) + (z \times x)$.
+ For all $x,y,z \in \reals$ $(y \add z) \rmul x = (y \rmul x) \add (z \rmul x)$.
\end{proposition}
\begin{proposition}\label{reals_reducion_on_addition}
- For all $x,y,z \in \reals$ if $x + y = x + z$ then $y = z$.
+ For all $x,y,z \in \reals$ if $x \add y = x \add z$ then $y = z$.
\end{proposition}
\begin{axiom}\label{reals_axiom_dedekind_complete}
@@ -116,20 +114,20 @@
\begin{lemma}\label{order_reals_lemma1}
For all $x,y,z \in \reals$ such that $\zero < x$
if $y < z$
- then $(y \times x) < (z \times x)$.
+ then $(y \rmul x) < (z \rmul x)$.
\end{lemma}
\begin{lemma}\label{order_reals_lemma2}
For all $x,y,z \in \reals$ such that $\zero < x$
if $y < z$
- then $(x \times y) < (x \times z)$.
+ then $(x \rmul y) < (x \rmul z)$.
\end{lemma}
\begin{lemma}\label{order_reals_lemma3}
For all $x,y,z \in \reals$ such that $x < \zero$
if $y < z$
- then $(x \times z) < (x \times y)$.
+ then $(x \rmul z) < (x \rmul y)$.
\end{lemma}
\begin{lemma}\label{o4rder_reals_lemma}
@@ -145,17 +143,13 @@
\end{lemma}
\begin{axiom}\label{reals_axiom_minus}
- For all $x \in \reals$ $x - x = \zero$.
+ For all $x \in \reals$ $x \rmiuns x = \zero$.
\end{axiom}
\begin{lemma}\label{reals_minus}
- Assume $x,y \in \reals$. If $x - y = \zero$ then $x=y$.
+ Assume $x,y \in \reals$. If $x \rmiuns y = \zero$ then $x=y$.
\end{lemma}
-%\begin{definition}\label{reasl_supremum} %expaction "there exists" after \mid
-% $\rsup{X} = \{z \mid \text{ $z \in \reals$ and for all $x,y$ such that $x \in X$ and $y,x \in \reals$ and $x < y$ we have $z \leq y$ }\}$.
-%\end{definition}
-
\begin{definition}\label{upper_bound}
$x$ is an upper bound of $X$ iff for all $y \in X$ we have $x > y$.
\end{definition}
@@ -185,7 +179,6 @@
\end{definition}
\begin{lemma}\label{infimum_unique}
- %Let $x,y \in \reals$ and let $X$ be a subset of $\reals$.
If $x$ is a greatest lower bound of $X$ and $y$ is a greatest lower bound of $X$ then $x = y$.
\end{lemma}
diff --git a/library/topology/basis.tex b/library/topology/basis.tex
index 6fa9fbd..bd7d15a 100644
--- a/library/topology/basis.tex
+++ b/library/topology/basis.tex
@@ -56,24 +56,52 @@
$\emptyset \in \genOpens{B}{X}$.
\end{lemma}
-\begin{lemma}\label{all_is_in_genopens}
+
+
+\begin{lemma}\label{union_in_genopens}
Assume $B$ is a topological basis for $X$.
- $X \in \genOpens{B}{X}$.
+ Assume $F\subseteq \genOpens{B}{X}$.
+ Then $\unions{F}\in\genOpens{B}{X}$.
\end{lemma}
\begin{proof}
- $B$ covers $X$ by \cref{topological_prebasis_iff_covering_family,topological_basis}.
- $\unions{B} \in \genOpens{B}{X}$.
- $X \subseteq \unions{B}$.
+ We have $\unions{F} \in \pow{X}$.
+
+ Show for all $x\in \unions{F}$ there exists $W \in B$
+ such that $x\in W$ and $W \subseteq \unions{F}$.
+ \begin{subproof}
+ Fix $x \in \unions{F}$.
+ There exists $V \in F$ such that $x \in V$ by \cref{unions_iff}.
+ $V \in \genOpens{B}{X}$.
+ There exists $W \in B$ such that $x \in W \subseteq V$.
+ Then $W \subseteq \unions{F}$.
+ \end{subproof}
+ Then $\unions{F}\in\genOpens{B}{X}$ by \cref{genopens}.
\end{proof}
-\begin{lemma}\label{union_in_genopens}
+\begin{lemma}\label{basis_is_in_genopens}
Assume $B$ is a topological basis for $X$.
- For all $F\subseteq \genOpens{B}{X}$ we have $\unions{F}\in\genOpens{B}{X}$.
+ $B \subseteq \genOpens{B}{X}$.
\end{lemma}
\begin{proof}
- Omitted.
+ We show for all $V \in B$ $V \in \genOpens{B}{X}$.
+ \begin{subproof}
+ Fix $V \in B$.
+ For all $x \in V$ $x \in V \subseteq V$.
+ $V \subseteq X$ by \cref{topological_prebasis_iff_covering_family,topological_basis}.
+ $V \in \pow{X}$.
+ $V \in \genOpens{B}{X}$.
+ \end{subproof}
\end{proof}
+\begin{lemma}\label{all_is_in_genopens}
+ Assume $B$ is a topological basis for $X$.
+ $X \in \genOpens{B}{X}$.
+\end{lemma}
+\begin{proof}
+ $B$ covers $X$ by \cref{topological_prebasis_iff_covering_family,topological_basis}.
+ $\unions{B} \in \genOpens{B}{X}$.
+ $X \subseteq \unions{B}$.
+\end{proof}
\begin{lemma}\label{inters_in_genopens}
Assume $B$ is a topological basis for $X$.
@@ -92,16 +120,13 @@
Then $x\in A,C$.
There exists $V' \in B$ such that $x \in V' \subseteq A$ by \cref{genopens}.
There exists $V'' \in B$ such that $x \in V''\subseteq C$ by \cref{genopens}.
- There exists $W \in B$ such that $x \in W$ and $W \subseteq V'$ and $W \subseteq V''$.
+ There exists $W \in B$ such that $x \in W$ and $W \subseteq V'$ and $W \subseteq V''$ by \cref{topological_basis}.
Show $W \subseteq (A\inter C)$.
\begin{subproof}
- %$W \subseteq v'$ and $W \subseteq V''$.
For all $y \in W$ we have $y \in V'$ and $y \in V''$.
\end{subproof}
\end{subproof}
- %Therefore for all $A, C, x$ such that $A \in \genOpens{B}{X}$ and $C \in \genOpens{B}{X}$ and $x \in (A \inter C)$ we have there exists $W \in B$
- %such that $x\in W$ and $W \subseteq (A\inter C)$.
- $(A\inter C) \in \genOpens{B}{X}$.
+ $(A\inter C) \in \genOpens{B}{X}$ by \cref{genopens}.
\end{proof}
diff --git a/library/topology/metric-space.tex b/library/topology/metric-space.tex
index 1c6a0ca..bcc5b8c 100644
--- a/library/topology/metric-space.tex
+++ b/library/topology/metric-space.tex
@@ -21,44 +21,16 @@
-%\begin{definition}\label{induced_topology}
-% $O$ is the induced topology of $d$ in $M$ iff
-% $O \subseteq \pow{M}$ and
-% $d$ is a metric on $M$ and
-% for all $x,r,A,B,C$
-% such that $x \in M$ and $r \in \reals$ and $A,B \in O$ and $C$ is a family of subsets of $O$
-% we have $\openball{r}{x}{d} \in O$ and $\unions{C} \in O$ and $A \inter B \in O$.
-%\end{definition}
-
-%\begin{definition}
-% $\projcetfirst{A} = \{a \mid \exists x \in X \text{there exist $x \i } \}$
-%\end{definition}
-
\begin{definition}\label{set_of_balls}
$\balls{d}{M} = \{ O \in \pow{M} \mid \text{there exists $x,r$ such that $r \in \reals$ and $x \in M$ and $O = \openball{r}{x}{d}$ } \}$.
\end{definition}
-%\begin{definition}\label{toindsas}
-% $\metricopens{d}{M} = \{O \in \pow{M} \mid \text{
-% $d$ is a metric on $M$ and
-% for all $x,r,A,B,C$
-% such that $x \in M$ and $r \in \reals$ and $A,B \in O$ and $C$ is a family of subsets of $O$
-% we have $\openball{r}{x}{d} \in O$ and $\unions{C} \in O$ and $A \inter B \in O$.
-% } \}$.
-%
-%\end{definition}
-
\begin{definition}\label{metricopens}
$\metricopens{d}{M} = \genOpens{\balls{d}{M}}{M}$.
\end{definition}
-\begin{theorem}
- Let $d$ be a metric on $M$.
- $M$ is a topological space.
-\end{theorem}
-
@@ -93,13 +65,6 @@
\end{lemma}
-%\begin{definition}\label{lenght_of_interval} %TODO: take minus if its implemented
-% $\lenghtinterval{x}{y} = r$
-%\end{definition}
-
-
-
-
\begin{lemma}\label{metric_implies_topology}
@@ -108,45 +73,3 @@
\end{lemma}
-
-
-
-%\begin{struct}\label{metric_space}
-% A metric space $M$ is a onesorted structure equipped with
-% \begin{enumerate}
-% \item $\metric$
-% \end{enumerate}
-% such that
-% \begin{enumerate}
-% \item \label{metric_space_d} $\metric[M]$ is a function from $M \times M$ to $\reals$.
-% \item \label{metric_space_distence_of_a_point} $\metric[M](x,x) = \zero$.
-% \item \label{metric_space_positiv} for all $x,y \in M$ if $x \neq y$ then $\zero < \metric[M](x,y)$.
-% \item \label{metric_space_symetrie} $\metric[M](x,y) = \metric[M](y,x)$.
-% \item \label{metric_space_triangle_equation} for all $x,y,z \in M$ $\metric[M](x,y) < \metric[M](x,z) + \metric[M](z,y)$ or $\metric[M](x,y) = \metric[M](x,z) + \metric[M](z,y)$.
-% \item \label{metric_space_topology} $M$ is a topological space.
-% \item \label{metric_space_opens} for all $x \in M$ for all $r \in \reals$ $\{z \in M \mid \metric[M](x,z) < r\} \in \opens$.
-% \end{enumerate}
-%\end{struct}
-
-%\begin{definition}\label{open_ball}
-% $\openball{r}{x}{M} = \{z \in M \mid \metric(x,z) < r\}$.
-%\end{definition}
-
-%\begin{proposition}\label{open_ball_is_open}
-% Let $M$ be a metric space,let $r \in \reals $, let $x$ be an element of $M$.
-% Then $\openball{r}{x}{M} \in \opens[M]$.
-%\end{proposition}
-
-
-
-
-
-
-%TODO: - Basis indudiert topology lemma
-% - Offe Bälle sind basis
-
-% Was danach kommen soll bleibt offen, vll buch oder in proof wiki
-% Trennungsaxiom,
-
-% Notaionen aufräumen damit das gut gemercht werden kann.
-