diff options
Diffstat (limited to 'library/topology/metric-space.tex')
| -rw-r--r-- | library/topology/metric-space.tex | 80 |
1 files changed, 80 insertions, 0 deletions
diff --git a/library/topology/metric-space.tex b/library/topology/metric-space.tex new file mode 100644 index 0000000..7021a60 --- /dev/null +++ b/library/topology/metric-space.tex @@ -0,0 +1,80 @@ +\import{topology/topological-space.tex} +\import{numbers.tex} +\import{function.tex} + +\section{Metric Spaces} + +\begin{abbreviation}\label{metric} + $f$ is a metric iff $f$ is a function to $\reals$. +\end{abbreviation} + +\begin{axiom}\label{metric_axioms} + $f$ is a metric iff $\dom{f} = A \times A$ and + for all $x,y,z \in A$ we have + $f(x,x) = \zero$ and + $f(x,y) = f(y,x)$ and + $f(x,y) \leq f(x,z) + f(z,y)$ and + if $x \neq y$ then $\zero < f(x,y)$. +\end{axiom} + +\begin{definition}\label{open_ball} + $\openball{r}{x}{f} = \{z \in M \mid \text{ $f$ is a metric and $\dom{f} = M \times M$ and $f(x,z)<r$ } \}$. +\end{definition} + + +\begin{struct}\label{metric_space} + A metric space $M$ is a onesorted structure equipped with + \begin{enumerate} + \item $\metric$ + \end{enumerate} + such that + \begin{enumerate} + \item \label{metric_space_d} $\metric[M]$ is a function from $M \times M$ to $\reals$. + \item \label{metric_space_metric} $\metric[M]$ is a metric. + \item \label{metric_space_topology} $M$ is a topological space. + \item \label{metric_space_opens} for all $x \in M$ for all $r \in \reals$ $\openball{r}{x}{\metric[M]} \in \opens[M]$. + \end{enumerate} +\end{struct} + +\begin{abbreviation}\label{descriptive_syntax_for_openball1} + $U$ is an open ball in $M$ of $x$ with radius $r$ iff $x \in M$ and $M$ is a metric space and $U = \openball{r}{x}{\metric[M]}$. +\end{abbreviation} + +\begin{abbreviation}\label{descriptive_syntax_for_openball2} + $U$ is an open ball in $M$ iff there exist $x \in M$ such that there exist $r \in \reals$ such that $U$ is an open ball in $M$ of $x$ with radius $r$. +\end{abbreviation} + +\begin{lemma}\label{union_of_open_balls_is_open} + Let $M$ be a metric space, let $U$ be an open ball in $M$, and let + $V$ be an open ball in $M$. + Then $U \union V$ is open in $M$. +\end{lemma} + + + +%\begin{struct}\label{metric_space} +% A metric space $M$ is a onesorted structure equipped with +% \begin{enumerate} +% \item $\metric$ +% \end{enumerate} +% such that +% \begin{enumerate} +% \item \label{metric_space_d} $\metric[M]$ is a function from $M \times M$ to $\reals$. +% \item \label{metric_space_distence_of_a_point} $\metric[M](x,x) = \zero$. +% \item \label{metric_space_positiv} for all $x,y \in M$ if $x \neq y$ then $\zero < \metric[M](x,y)$. +% \item \label{metric_space_symetrie} $\metric[M](x,y) = \metric[M](y,x)$. +% \item \label{metric_space_triangle_equation} for all $x,y,z \in M$ $\metric[M](x,y) < \metric[M](x,z) + \metric[M](z,y)$ or $\metric[M](x,y) = \metric[M](x,z) + \metric[M](z,y)$. +% \item \label{metric_space_topology} $M$ is a topological space. +% \item \label{metric_space_opens} for all $x \in M$ for all $r \in \reals$ $\{z \in M \mid \metric[M](x,z) < r\} \in \opens$. +% \end{enumerate} +%\end{struct} + +%\begin{definition}\label{open_ball} +% $\openball{r}{x}{M} = \{z \in M \mid \metric(x,z) < r\}$. +%\end{definition} + +%\begin{proposition}\label{open_ball_is_open} +% Let $M$ be a metric space,let $r \in \reals $, let $x$ be an element of $M$. +% Then $\openball{r}{x}{M} \in \opens[M]$. +%\end{proposition} + |
