summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--library/numbers.tex72
-rw-r--r--library/topology/metric-space.tex80
-rw-r--r--library/topology/order-topology.tex32
3 files changed, 146 insertions, 38 deletions
diff --git a/library/numbers.tex b/library/numbers.tex
index 93623fa..afb7d3f 100644
--- a/library/numbers.tex
+++ b/library/numbers.tex
@@ -4,6 +4,14 @@
\section{The real numbers}
+%TODO: Implementing Notion for negativ number such as -x.
+
+%TODO:
+%\inv{} für inverse benutzen. Per Signatur einfüheren und dann axiomatisch absicher
+%\cdot für multiklikation verwenden.
+%< für die relation benutzen.
+
+
\begin{signature}
$\reals$ is a set.
\end{signature}
@@ -22,19 +30,31 @@
\begin{axiom}\label{reals_axiom_order}
$\lt[\reals]$ is an order on $\reals$.
- %$\reals$ is an ordered set.
\end{axiom}
\begin{axiom}\label{reals_axiom_strictorder}
$\lt[\reals]$ is a strict order.
\end{axiom}
+\begin{abbreviation}\label{less_on_reals}
+ $x < y$ iff $(x,y) \in \lt[\reals]$.
+\end{abbreviation}
+
+\begin{abbreviation}\label{greater_on_reals}
+ $x > y$ iff $y < x$.
+\end{abbreviation}
+
+\begin{abbreviation}\label{lesseq_on_reals}
+ $x \leq y$ iff it is wrong that $x > y$.
+\end{abbreviation}
+
+\begin{abbreviation}\label{greatereq_on_reals}
+ $x \geq y$ iff it is wrong that $x < y$.
+\end{abbreviation}
+
\begin{axiom}\label{reals_axiom_dense}
For all $x,y \in \reals$ if $(x,y)\in \lt[\reals]$ then
there exist $z \in \reals$ such that $(x,z) \in \lt[\reals]$ and $(z,y) \in \lt[\reals]$.
-
- %For all $X,Y \subseteq \reals$ if for all $x,y$ $x\in X$ and $y \in Y$ such that $x \lt[\reals] y$
- %then there exist a $z \in \reals$ such that if $x \neq z$ and $y \neq z$ $x \lt[\reals] z$ and $z \lt[\reals] y$.
\end{axiom}
\begin{axiom}\label{reals_axiom_order_def}
@@ -57,18 +77,12 @@
\begin{axiom}\label{reals_axiom_zero_in_reals}
$\zero \in \reals$.
\end{axiom}
-
-%\begin{axiom}\label{reals_axiom_one_in_reals}
-% $\one \in \reals$.
-%\end{axiom}
-
+
\begin{axiom}\label{reals_axiom_zero}
- %There exist $\zero \in \reals$ such that
For all $x \in \reals$ $x + \zero = x$.
\end{axiom}
\begin{axiom}\label{reals_axiom_one}
- %There exist $1 \in \reals$ such that
For all $x \in \reals$ $1 \neq \zero$ and $x \times 1 = x$.
\end{axiom}
@@ -76,11 +90,6 @@
For all $x \in \reals$ there exist $y \in \reals$ such that $x + y = \zero$.
\end{axiom}
-%TODO: Implementing Notion for negativ number such as -x.
-
-%\begin{abbreviation}\label{reals_notion_minus}
-% $y = -x$ iff $x + y = \zero$.
-%\end{abbreviation} %This abbrevation result in a killed process.
\begin{axiom}\label{reals_axiom_mul_invers}
For all $x \in \reals$ there exist $y \in \reals$ such that $x \neq \zero$ and $x \times y = 1$.
@@ -98,27 +107,8 @@
For all $x,y,z \in \reals$ if $x + y = x + z$ then $y = z$.
\end{proposition}
-\begin{signature}
- $\invers$ is a set.
-\begin{signature}
-
-%TODO:
-%x \rless y in einer signatur hinzufügen und dann axiom x+z = y und dann \rlt in def per iff
-%\inv{} für inverse benutzen. Per Signatur einfüheren und dann axiomatisch absicher
-%\cdot für multiklikation verwenden.
-%< für die relation benutzen.
-
-%\begin{signature}
-% $y^{\rightarrow}$ is a function.
-%\end{signature}
-%\begin{axiom}\label{notion_multi_invers}
-% If $y \in \reals$ then $\invers{y} \in \reals$ and $y \times y^{\rightarrow} = 1$.
-%\end{axiom}
-%\begin{abbreviation}\label{notion_fraction}
-% $\frac{x}{y} = x \times y^{\rightarrow}$.
-%\end{abbreviation}
\begin{lemma}\label{order_reals_lemma1}
For all $x,y,z \in \reals$ such that $(\zero,x) \in \lt[\reals]$
@@ -138,3 +128,15 @@
if $(y,z) \in \lt[\reals]$
then $((x \times z), (x \times y)) \in \lt[\reals]$.
\end{lemma}
+
+\begin{lemma}\label{a}
+ For all $x,y \in \reals$ if $x > y$ then $x \geq y$.
+\end{lemma}
+
+\begin{lemma}\label{aa}
+ For all $x,y \in \reals$ if $x < y$ then $x \leq y$.
+\end{lemma}
+
+\begin{lemma}\label{aaa}
+ For all $x,y \in \reals$ if $x \leq y \leq x$ then $x=y$.
+\end{lemma} \ No newline at end of file
diff --git a/library/topology/metric-space.tex b/library/topology/metric-space.tex
new file mode 100644
index 0000000..7021a60
--- /dev/null
+++ b/library/topology/metric-space.tex
@@ -0,0 +1,80 @@
+\import{topology/topological-space.tex}
+\import{numbers.tex}
+\import{function.tex}
+
+\section{Metric Spaces}
+
+\begin{abbreviation}\label{metric}
+ $f$ is a metric iff $f$ is a function to $\reals$.
+\end{abbreviation}
+
+\begin{axiom}\label{metric_axioms}
+ $f$ is a metric iff $\dom{f} = A \times A$ and
+ for all $x,y,z \in A$ we have
+ $f(x,x) = \zero$ and
+ $f(x,y) = f(y,x)$ and
+ $f(x,y) \leq f(x,z) + f(z,y)$ and
+ if $x \neq y$ then $\zero < f(x,y)$.
+\end{axiom}
+
+\begin{definition}\label{open_ball}
+ $\openball{r}{x}{f} = \{z \in M \mid \text{ $f$ is a metric and $\dom{f} = M \times M$ and $f(x,z)<r$ } \}$.
+\end{definition}
+
+
+\begin{struct}\label{metric_space}
+ A metric space $M$ is a onesorted structure equipped with
+ \begin{enumerate}
+ \item $\metric$
+ \end{enumerate}
+ such that
+ \begin{enumerate}
+ \item \label{metric_space_d} $\metric[M]$ is a function from $M \times M$ to $\reals$.
+ \item \label{metric_space_metric} $\metric[M]$ is a metric.
+ \item \label{metric_space_topology} $M$ is a topological space.
+ \item \label{metric_space_opens} for all $x \in M$ for all $r \in \reals$ $\openball{r}{x}{\metric[M]} \in \opens[M]$.
+ \end{enumerate}
+\end{struct}
+
+\begin{abbreviation}\label{descriptive_syntax_for_openball1}
+ $U$ is an open ball in $M$ of $x$ with radius $r$ iff $x \in M$ and $M$ is a metric space and $U = \openball{r}{x}{\metric[M]}$.
+\end{abbreviation}
+
+\begin{abbreviation}\label{descriptive_syntax_for_openball2}
+ $U$ is an open ball in $M$ iff there exist $x \in M$ such that there exist $r \in \reals$ such that $U$ is an open ball in $M$ of $x$ with radius $r$.
+\end{abbreviation}
+
+\begin{lemma}\label{union_of_open_balls_is_open}
+ Let $M$ be a metric space, let $U$ be an open ball in $M$, and let
+ $V$ be an open ball in $M$.
+ Then $U \union V$ is open in $M$.
+\end{lemma}
+
+
+
+%\begin{struct}\label{metric_space}
+% A metric space $M$ is a onesorted structure equipped with
+% \begin{enumerate}
+% \item $\metric$
+% \end{enumerate}
+% such that
+% \begin{enumerate}
+% \item \label{metric_space_d} $\metric[M]$ is a function from $M \times M$ to $\reals$.
+% \item \label{metric_space_distence_of_a_point} $\metric[M](x,x) = \zero$.
+% \item \label{metric_space_positiv} for all $x,y \in M$ if $x \neq y$ then $\zero < \metric[M](x,y)$.
+% \item \label{metric_space_symetrie} $\metric[M](x,y) = \metric[M](y,x)$.
+% \item \label{metric_space_triangle_equation} for all $x,y,z \in M$ $\metric[M](x,y) < \metric[M](x,z) + \metric[M](z,y)$ or $\metric[M](x,y) = \metric[M](x,z) + \metric[M](z,y)$.
+% \item \label{metric_space_topology} $M$ is a topological space.
+% \item \label{metric_space_opens} for all $x \in M$ for all $r \in \reals$ $\{z \in M \mid \metric[M](x,z) < r\} \in \opens$.
+% \end{enumerate}
+%\end{struct}
+
+%\begin{definition}\label{open_ball}
+% $\openball{r}{x}{M} = \{z \in M \mid \metric(x,z) < r\}$.
+%\end{definition}
+
+%\begin{proposition}\label{open_ball_is_open}
+% Let $M$ be a metric space,let $r \in \reals $, let $x$ be an element of $M$.
+% Then $\openball{r}{x}{M} \in \opens[M]$.
+%\end{proposition}
+
diff --git a/library/topology/order-topology.tex b/library/topology/order-topology.tex
index afa8755..2dd026d 100644
--- a/library/topology/order-topology.tex
+++ b/library/topology/order-topology.tex
@@ -1,7 +1,33 @@
\import{topology/topological-space.tex}
+\import{order/order.tex}
\section{Order Topology}
-\begin{definition}
- A
-\end{definition}
+\begin{abbreviation}\label{open_interval}
+ $z \in \oointervalof{x}{y}$ iff $x \mathrel{R} y$ and $x \mathrel{R} z$ and $z \mathrel{R} y$.
+ %$\oointervalof{x}{y}{X} = \{ z \mid x \in X, y \in X, z \in X x \mathrel{R} y \wedge x \mathrel{R} z \wedge z \mathrel{R} y\}$.
+\end{abbreviation}
+
+\begin{struct}\label{order_topology}
+ A ordertopology space $X$ is a onesorted structure equipped with
+ \begin{enumerate}
+ \item $<$
+ \end{enumerate}
+ such that
+ \begin{enumerate}
+ \item \label{order_topology_1} $<$ is a strict order on $X$
+ \item \label{order_topology_2}
+ \item \label{order_topology_3}
+ \item \label{order_topology_4}
+ \item \label{order_topology}
+ \item \label{order_topology}
+ \item \label{order_topology}
+ \end{enumerate}
+\end{struct}
+
+
+
+%\begin{definition}\label{order_topology}
+% $X$ has the order topology iff for all $x,y \in X$ $X$ has a strict order $R$ and $\oointervalof{x}{y}{X} \in \opens[X]$ and $X$ is a topological space.
+% %$O$ is the order Topology on $X$ iff for all $x,y \in X$ $X$ has a strict order $R$ and $(x,y) \in O$ and $O$ is .
+%\end{definition}