diff options
Diffstat (limited to 'library/topology/urysohn2.tex')
| -rw-r--r-- | library/topology/urysohn2.tex | 254 |
1 files changed, 196 insertions, 58 deletions
diff --git a/library/topology/urysohn2.tex b/library/topology/urysohn2.tex index ce6d742..08841da 100644 --- a/library/topology/urysohn2.tex +++ b/library/topology/urysohn2.tex @@ -40,7 +40,7 @@ \begin{definition}\label{chain_of_subsets} - $X$ is a chain of subsets in $Y$ iff $X$ is a sequence and for all $n \in \dom{X}$ we have $\at{X}{n} \subseteq \carrier[Y]$ and for all $m \in \dom{X}$ such that $m > n$ we have $\at{X}{n} \subseteq \at{X}{m}$. + $X$ is a chain of subsets in $Y$ iff $X$ is a sequence and for all $n \in \dom{X}$ we have $\at{X}{n} \subseteq \carrier[Y]$ and for all $m \in \dom{X}$ such that $n < m$ we have $\at{X}{n} \subseteq \at{X}{m}$. \end{definition} @@ -49,11 +49,11 @@ \end{definition} \begin{definition}\label{urysohn_finer_set} - $A$ is finer between $X$ to $Y$ in $U$ iff $\closure{X}{U} \subseteq \interior{A}{U}$ and $\closure{A}{U} \subseteq \interior{Y}{U}$. + $A$ is finer between $B$ to $C$ in $X$ iff $\closure{B}{X} \subseteq \interior{A}{X}$ and $\closure{A}{X} \subseteq \interior{C}{X}$. \end{definition} \begin{definition}\label{finer} %<-- verfeinerung - $Y$ is finer then $X$ in $U$ iff for all $n \in \dom{X}$ we have $\at{X}{n} \in \ran{Y}$ and for all $m \in \dom{X}$ such that $n < m$ we have there exist $k \in \dom{Y}$ such that $\at{Y}{k}$ is finer between $\at{X}{n}$ to $\at{X}{m}$ in $U$. + $A$ is finer then $B$ in $X$ iff for all $n \in \dom{B}$ we have $\at{B}{n} \in \ran{A}$ and for all $m \in \dom{B}$ such that $n < m$ we have there exist $k \in \dom{A}$ such that $\at{A}{k}$ is finer between $\at{B}{n}$ to $\at{B}{m}$ in $X$. \end{definition} \begin{definition}\label{follower_index} @@ -92,6 +92,46 @@ $f$ is consistent on $X$ to $Y$ iff $f$ is a bijection from $\dom{X}$ to $\dom{Y}$ and for all $n,m \in \dom{X}$ such that $n < m$ we have $f(n) < f(m)$. \end{definition} + +%\begin{definition}\label{staircase} +% $f$ is a staircase function adapted to $U$ in $X$ iff $U$ is a urysohnchain of $X$ and $f$ is a function from $\carrier[X]$ to $\reals$ and there exist $k \in \naturals$ such that $k = \max{\dom{U}}$ and for all $x,y \in \carrier[X]$ such that $y \in \carrier[X] \setminus \at{U}{k}$ and $x \in \at{U}{k}$ we have $f(y) = 1$ and there exist $n,m \in \dom{U}$ such that $n$ follows $m$ in $\dom{U}$ and $x \in (\at{U}{m} \setminus \at{U}{n})$ and $f(x)= \rfrac{m}{k}$. +%\end{definition} + + +\begin{definition}\label{staircase_step_value1} + $a$ is the staircase step value at $y$ of $U$ in $X$ iff there exist $n,m \in \dom{U}$ such that $n$ follows $m$ in $\dom{U}$ and $y \in \closure{\at{U}{n}}{X} \setminus \closure{\at{U}{m}}{X}$ and $a = \rfrac{n}{\max{\dom{U}}}$. +\end{definition} + +\begin{definition}\label{staircase_step_value2} + $a$ is the staircase step valuetwo at $y$ of $U$ in $X$ iff either if $y \in (\carrier[X] \setminus \closure{\at{U}{\max{\dom{U}}}}{X})$ then $a = 1$ or $a$ is the staircase step valuethree at $y$ of $U$ in $X$. +\end{definition} + +\begin{definition}\label{staircase_step_value3} + $a$ is the staircase step valuethree at $y$ of $U$ in $X$ iff if $y \in \closure{\at{U}{\min{\dom{U}}}}{X}$ then $f(z) = \zero$. +\end{definition} + + +\begin{definition}\label{staircase2} + $f$ is a staircase function adapted to $U$ in $X$ iff $U$ is a urysohnchain of $X$ and $f$ is a function from $\carrier[X]$ to $\reals$ and for all $y \in \carrier[X]$ we have either $f(y)$ is the staircase step value at $y$ of $U$ in $X$ or $f(y)$ is the staircase step valuetwo at $y$ of $U$ in $X$. +\end{definition} + +\begin{definition}\label{staircase_sequence} + $S$ is staircase sequence of $U$ in $X$ iff $S$ is a sequence and $U$ is a lifted urysohnchain of $X$ and $\dom{U} = \dom{S}$ and for all $n \in \dom{U}$ we have $\at{S}{n}$ is a staircase function adapted to $\at{U}{n}$ in $X$. +\end{definition} + +\begin{definition}\label{staircase_limit_point} + $x$ is the staircase limit of $S$ with $y$ iff $x \in \reals$ and for all $\epsilon \in \realsplus$ there exist $n_0 \in \naturals$ such that for all $n \in \naturals$ such that $n_0 \rless n$ we have $\apply{\at{S}{n}}{y} \in \epsBall{x}{\epsilon}$. +\end{definition} + +%\begin{definition}\label{staircase_limit_function} +% $f$ is a limit function of a staircase $S$ iff $S$ is staircase sequence of $U$ and $U$ is a lifted urysohnchain of $X$ and $\dom{f} = \carrier[X]$ and for all $x \in \dom{f}$ we have $f(x)$ is the staircase limit of $S$ with $x$ and $f$ is a function from $\carrier[X]$ to $\reals$. +%\end{definition} +% +\begin{definition}\label{staircase_limit_function} + $f$ is the limit function of staircase $S$ together with $U$ and $X$ iff $S$ is staircase sequence of $U$ in $X$ and $U$ is a lifted urysohnchain of $X$ and $\dom{f} = \carrier[X]$ and for all $x \in \dom{f}$ we have $f(x)$ is the staircase limit of $S$ with $x$ and $f$ is a function from $\carrier[X]$ to $\reals$. +\end{definition} + + \begin{proposition}\label{naturals_in_transitive} $\naturals$ is a \in-transitive set. \end{proposition} @@ -659,33 +699,26 @@ \end{proof} -\begin{definition}\label{staircase} - $f$ is a staircase function adapted to $U$ in $X$ iff $U$ is a urysohnchain of $X$ and for all $x,n,m,k$ such that $k = \max{\dom{U}}$ and $n,m \in \dom{U}$ and $n$ follows $m$ in $\dom{U}$ and $x \in (\at{U}{m} \setminus \at{U}{n})$ we have $f(x)= \rfrac{m}{k}$. -\end{definition} - -\begin{definition}\label{staircase_sequence} - $S$ is staircase sequence of $U$ iff $S$ is a sequence and $U$ is a lifted urysohnchain of $X$ and $\dom{U} = \dom{S}$ and for all $n \in \dom{U}$ we have $\at{S}{n}$ is a staircase function adapted to $\at{U}{n}$ in $U$. -\end{definition} - -\begin{definition}\label{staircase_limit_point} - $x$ is the staircase limit of $S$ with $y$ iff $x \in \reals$ and for all $\epsilon \in \realsplus$ there exist $n_0 \in \naturals$ such that for all $n \in \naturals$ such that $n_0 \rless n$ we have $\apply{\at{S}{n}}{y} \in \epsBall{x}{\epsilon}$. -\end{definition} - -\begin{definition}\label{staircase_limit_function} - $f$ is a limit function of a staircase $S$ iff $S$ is staircase sequence of $U$ and $U$ is a lifted urysohnchain of $X$ and $\dom{f} = \carrier[X]$ and for all $x \in \dom{f}$ we have $f(x)$ is the staircase limit of $S$ with $x$ and $f$ is a function from $\carrier[X]$ to $\reals$. -\end{definition} +\begin{proposition}\label{staircase_ran_in_zero_to_one} + Let $X$ be a urysohn space. + Suppose $U$ is a urysohnchain of $X$. + Suppose $f$ is a staircase function adapted to $U$ in $X$. + Then $\ran{f} \subseteq \intervalclosed{\zero}{1}$. +\end{proposition} +\begin{proof} + Omitted. +\end{proof} -%\begin{definition}\label{staircase_limit_function} -% $f$ is a limit function of staircase $S$ iff $S$ is staircase sequence of $U$ and $U$ is a lifted urysohnchain of $X$ and $\dom{f} = \carrier[X]$ and for all $x \in \dom{f}$ we have $f(x)$ is the staircase limit of $S$ with $x$ and $f$ is a function from $\carrier[X]$ to $\reals$. -%\end{definition} -% -%\begin{proposition}\label{staircase_limit_is_continuous} -% Suppose $X$ is a urysohnspace. -% Suppose $U$ is a lifted urysohnchain of $X$. -% Suppose $S$ is staircase sequence of $U$. -% Suppose $f$ is the limit function of a staircase $S$. -% Then $f$ is continuous. -%\end{proposition} +\begin{proposition}\label{staircase_limit_is_continuous} + Let $X$ be a urysohn space. + Suppose $U$ is a lifted urysohnchain of $X$. + Suppose $S$ is staircase sequence of $U$ in $X$. + Suppose $f$ is the limit function of staircase $S$ together with $U$ and $X$. + Then $f$ is continuous. +\end{proposition} +\begin{proof} + Omitted. +\end{proof} \begin{theorem}\label{urysohnsetinbeetween} Let $X$ be a urysohn space. @@ -712,8 +745,26 @@ Omitted. \end{proof} +\begin{lemma}\label{fractions_between_zero_one} + Suppose $n,m \in \naturals$. + Suppose $m > n$. + Then $\zero \leq \rfrac{n}{m} \leq 1$. +\end{lemma} +\begin{proof} + Omitted. +\end{proof} +\begin{lemma}\label{intervalclosed_border_is_elem} + Suppose $a,b \in \reals$. + Suppose $a < b$. + Then $a,b \in \intervalclosed{a}{b}$. +\end{lemma} +\begin{lemma}\label{urysohnchain_subseteqrel} + Let $X$ be a urysohn space. + Suppose $U$ is a urysohnchain of $X$. + Then for all $n,m \in \dom{U}$ such that $n < m$ we have $\at{U}{n} \subseteq \at{U}{m}$. +\end{lemma} \begin{theorem}\label{urysohn} @@ -721,8 +772,8 @@ Suppose $A,B \in \closeds{X}$. Suppose $A \inter B$ is empty. Suppose $\carrier[X]$ is inhabited. - There exist $f$ such that $f \in \funs{\carrier[X]}{\intervalclosed{\zero}{1}}$ - and $f(A) = \zero$ and $f(B)= 1$ and $f$ is continuous. + There exist $f$ such that $f \in \funs{\carrier[X]}{\intervalclosed{\zero}{1}}$ and $f$ is continuous + and for all $a,b$ such that $a \in A$ and $b \in B$ we have $f(a)= \zero$ and $f(b) = 1$. \end{theorem} \begin{proof} Let $X' = \carrier[X]$. @@ -796,46 +847,133 @@ \end{subproof} Take $U$ such that $U$ is a lifted urysohnchain of $X$ and $\at{U}{\zero} = U_0$. - We show that there exist $S$ such that $S$ is staircase sequence of $U$. + We show that there exist $S$ such that $S$ is staircase sequence of $U$ in $X$. \begin{subproof} Omitted. \end{subproof} - Take $S$ such that $S$ is staircase sequence of $U$. + Take $S$ such that $S$ is staircase sequence of $U$ in $X$. %For all $x \in \carrier[X]$ we have there exist $r,R$ such that $r \in \reals$ and $R$ is a sequence of reals and $\dom{R} = \naturals$ and $R$ converge to $r$ and for all $n \in \naturals$ we have $\at{R}{n} = \apply{\at{S}{n}}{x}$. % %We show that for all $x \in \carrier[X]$ there exists $r \in \intervalclosed{a}{b}$ such that for . -% + We show that there exist $f$ such that $f$ is the limit function of staircase $S$ together with $U$ and $X$. + \begin{subproof} + Omitted. + \end{subproof} + Take $f$ such that $f$ is the limit function of staircase $S$ together with $U$ and $X$. + Then $f$ is continuous. + We show that $\dom{f} = \carrier[X]$. + \begin{subproof} + Trivial. + \end{subproof} + $f$ is a function. + We show that $\ran{f} \subseteq \intervalclosed{\zero}{1}$. + \begin{subproof} + It suffices to show that $f$ is a function to $\intervalclosed{\zero}{1}$. + It suffices to show that for all $x \in \dom{f}$ we have $f(x) \in \intervalclosed{\zero}{1}$. + Fix $x \in \dom{f}$. + $f(x)$ is the staircase limit of $S$ with $x$. + Therefore $f(x) \in \reals$. + + We show that for all $n \in \naturals$ we have $\apply{\at{S}{n}}{x} \in \intervalclosed{\zero}{1}$. + \begin{subproof} + Fix $n \in \naturals$. + Let $g = \at{S}{n}$. + Let $U' = \at{U}{n}$. + $\at{S}{n}$ is a staircase function adapted to $\at{U}{n}$ in $X$. + $g$ is a staircase function adapted to $U'$ in $X$. + $U'$ is a urysohnchain of $X$. + $g$ is a function from $\carrier[X]$ to $\reals$. + It suffices to show that $\ran{g} \subseteq \intervalclosed{\zero}{1}$ by \cref{function_apply_default,reals_axiom_zero_in_reals,intervalclosed,one_is_positiv,function_apply_elim,inter,inter_absorb_supseteq_left,ran_iff,funs_is_relation,funs_is_function,staircase2}. + It suffices to show that for all $x \in \dom{g}$ we have $g(x) \in \intervalclosed{\zero}{1}$. + Fix $x\in \dom{g}$. + Then $x \in \carrier[X]$. + \begin{byCase} + \caseOf{$x \in (\carrier[X] \setminus \closure{\at{U'}{\max{\dom{U'}}}}{X})$.} + Therefore $x \notin \closure{\at{U'}{\max{\dom{U'}}}}{X}$. + Therefore $x \notin \closure{\at{U'}{\min{\dom{U'}}}}{X}$. + Therefore $x \notin (\closure{\at{U'}{\max{\dom{U'}}}}{X}\setminus \closure{\at{U'}{\min{\dom{U'}}}}{X})$. + Then $g(x) = 1$ . + \caseOf{$x \in \closure{\at{U'}{\max{\dom{U'}}}}{X}$.} + \begin{byCase} + \caseOf{$x \in \closure{\at{U'}{\min{\dom{U'}}}}{X}$.} + $g(x) = \zero$. + \caseOf{$x \in (\closure{\at{U'}{\max{\dom{U'}}}}{X}\setminus \closure{\at{U'}{\min{\dom{U'}}}}{X})$.} + Then $g(x)$ is the staircase step value at $x$ of $U'$ in $X$. + \end{byCase} + \end{byCase} + + + + %$\at{S}{n}$ is a staircase function adapted to $\at{U}{n}$ in $X$. + %$\at{U}{n}$ is a urysohnchain of $X$. + %$\at{S}{n}$ is a function from $\carrier[X]$ to $\reals$. + %there exist $k \in \naturals$ such that $k = \max{\dom{\at{U}{n}}}$. + %Take $k \in \naturals$ such that $k = \max{\dom{\at{U}{n}}}$. + %\begin{byCase} + % \caseOf{$x \in \carrier[X] \setminus \at{\at{U}{n}}{k}$.} + % $1 \in \intervalclosed{\zero}{1}$. + % We show that for all $y \in (\carrier[X] \setminus \at{\at{U}{n}}{k})$ we have $\apply{\at{S}{n}}{y} = 1$. + % \begin{subproof} + % Omitted. + % \end{subproof} + % Then $\apply{\at{S}{n}}{x} = 1$. + % \caseOf{$x \notin \carrier[X] \setminus \at{\at{U}{n}}{k}$.} + % %There exist $n',m' \in \dom{\at{U}{n}}$ such that $n'$ follows $m'$ in $\dom{\at{U}{n}}$ and $x \in (\at{\at{U}{n}}{n'} \setminus \at{\at{U}{n}}{m'})$. + % Take $n',m' \in \dom{\at{U}{n}}$ such that $n'$ follows $m'$ in $\dom{\at{U}{n}}$ and $x \in (\at{\at{U}{n}}{n'} \setminus \at{\at{U}{n}}{m'})$. + % Then $\apply{\at{S}{n}}{x} = \rfrac{m'}{k'}$. + % It suffices to show that $\rfrac{m'}{k'} \in \intervalclosed{\zero}{1}$. + % $\zero \leq m' \leq k$. + %\end{byCase} + %%It suffices to show that $\zero \leq \apply{\at{S}{n}}{x} \leq 1$. + %%It suffices to show that $\ran{\at{S}{n}} \subseteq \intervalclosed{\zero}{1}$. + \end{subproof} + + Suppose not. + Then $f(x) < \zero$ or $f(x) > 1$ by \cref{reals_order_total,reals_axiom_zero_in_reals,intervalclosed,one_is_positiv,one_in_reals}. + For all $\epsilon \in \realsplus$ we have there exist $m \in \naturals$ such that $\apply{\at{S}{m}}{x} \in \epsBall{f(x)}{\epsilon}$ by \cref{plus_one_order,naturals_is_equal_to_two_times_naturals,subseteq,naturals_subseteq_reals,staircase_limit_point}. + \begin{byCase} + \caseOf{$f(x) < \zero$.} + Let $\delta = \zero - f(x)$. + $\delta \in \realsplus$. + It suffices to show that for all $n \in \naturals$ we have $\apply{\at{S}{n}}{x} \notin \epsBall{f(x)}{\delta}$. + Fix $n \in \naturals$. + $\at{S}{n}$ is a staircase function adapted to $\at{U}{n}$ in $X$. + For all $y \in \epsBall{f(x)}{\delta}$ we have $y < \zero$ by \cref{epsilon_ball,minus_behavior1,minus_behavior3,minus,apply,intervalopen}. + It suffices to show that $\apply{\at{S}{n}}{x} \in \intervalclosed{\zero}{1}$. + Trivial. + \caseOf{$f(x) > 1$.} + Let $\delta = f(x) - 1$. + $\delta \in \realsplus$. + It suffices to show that for all $n \in \naturals$ we have $\apply{\at{S}{n}}{x} \notin \epsBall{f(x)}{\delta}$. + Fix $n \in \naturals$. + $\at{S}{n}$ is a staircase function adapted to $\at{U}{n}$ in $X$. + For all $y \in \epsBall{f(x)}{\delta}$ we have $y > 1$ by \cref{epsilon_ball,reals_addition_minus_behavior2,minus_in_reals,apply,reals_addition_minus_behavior1,minus,reals_add,realsplus_in_reals,one_in_reals,reals_axiom_kommu,intervalopen}. + It suffices to show that $\apply{\at{S}{n}}{x} \in \intervalclosed{\zero}{1}$. + Trivial. + \end{byCase} + + \end{subproof} + Therefore $f \in \funs{\carrier[X]}{\intervalclosed{\zero}{1}}$ by \cref{staircase_limit_function,surj_to_fun,fun_to_surj,neq_witness,inters_of_ordinals_elem,times_tuple_elim,img_singleton_iff,foundation,subseteq_emptyset_iff,inter_eq_left_implies_subseteq,inter_emptyset,funs_intro,fun_ran_iff,not_in_subseteq}. + + We show that for all $a \in A$ we have $f(a) = \zero$. + \begin{subproof} + Omitted. + \end{subproof} + We show that for all $b \in B$ we have $f(b) = 1$. + \begin{subproof} + Omitted. + \end{subproof} + - \end{proof} -\begin{theorem}\label{safe} - Contradiction. -\end{theorem} +%\begin{theorem}\label{safe} +% Contradiction. +%\end{theorem} -% -%Ideen: -%Eine folge ist ein Funktion mit domain \subseteq Natürlichenzahlen. als predicat -% -%zulässig und verfeinerung von ketten als predicat definieren. -% -%limits und punkt konvergenz als prädikat. -% -% -%Vor dem Beweis vor dem eigentlichen Beweis. -%die abgeleiteten Funktionen -% -%\derivedstiarcasefunction on A -% -%abbreviation: \at{f}{n} = f_{n} -% -% -%TODO: -%Reals ist ein topologischer Raum -% |
