summaryrefslogtreecommitdiff
path: root/library/topology
diff options
context:
space:
mode:
Diffstat (limited to 'library/topology')
-rw-r--r--library/topology/urysohn.tex34
1 files changed, 27 insertions, 7 deletions
diff --git a/library/topology/urysohn.tex b/library/topology/urysohn.tex
index 028e10f..f34f12f 100644
--- a/library/topology/urysohn.tex
+++ b/library/topology/urysohn.tex
@@ -5,6 +5,7 @@
\import{function.tex}
\import{set.tex}
\import{cardinal.tex}
+\import{relation.tex}
\section{Urysohns Lemma}
% In this section we want to proof Urysohns lemma.
@@ -188,10 +189,20 @@ The first tept will be a formalisation of chain constructions.
\end{lemma}
+\begin{axiom}\label{pot1}
+ $\pot \in \funs{\naturals}{\naturals}$.
+\end{axiom}
+\begin{axiom}\label{pot2}
+ For all $n \in \naturals$ we have there exist $k\in \naturals$ such that $(n, k) \in \powerOfTwoSet$ and $\apply{\pot}{n}=k$.
+ %$\pot(n) = k$ iff there exist $x \in \powerOfTwoSet$ such that $x = (n,k)$.
+\end{axiom}
-
+%Without this abbreviation \pot cant be sed as a function in the standard sense
+\begin{abbreviation}\label{pot_as_function}
+ $\pot(n) = \apply{\pot}{n}$.
+\end{abbreviation}
\begin{proposition}\label{urysohnchain_induction_begin}
@@ -356,15 +367,24 @@ The first tept will be a formalisation of chain constructions.
and for all $n \in \indexset[\zeta]$ we have $n+1 \in \indexset[\zeta]$
and $\index[\zeta](n+1)$ is a refinmant of $\index[\zeta](n)$.
\begin{subproof}
- %Let $P = \{ n \in \naturals \mid \exists \zeta. ((n = \zero \land \index[\zeta](n) = \eta \land \index[\zeta](n+1)$ is a refinmant of $\index[\zeta](n)) \lor (n \neq \zero \land \index[\zeta](n)$ is a urysohnchain in $X$ \land $\index[\zeta](n+1)$ is a refinmant of $\index[\zeta](n)))\}$.
- %Let $C = \{ x \mid \text{$x$ is a uysohncahin in $X$}\}$.
- Let $\alpha = \{x \in C \mid \exists y \in \alpha. x \refine y \lor x = \eta\}$.
- Let $\beta = \{ (n,x) \mid n \in \naturals \mid \exists m \in \naturals. \exists y \in \alpha. (x \in \alpha) \land ((x \refine y \land m = n+1 )\lor ((n,x) = (\zero,\eta)))\}$.
+ %Let $\alpha = \{x \in C \mid \exists y \in \alpha. x \refine y \lor x = \eta\}$.
+ %Let $\beta = \{ (n,x) \mid n \in \naturals \mid \exists m \in \naturals. \exists y \in \alpha. (x \in \alpha) \land ((x \refine y \land m = n+1 )\lor ((n,x) = (\zero,\eta)))\}$.
+ %
+ % % TODO: Proof that \beta is a function which would be used for the indexing.
+ %For all $n \in \naturals$ we have there exist $x \in \alpha$ such that $(n,x) \in \beta$.
+ %$\dom{\beta} = \naturals$.
+ %$\ran{\beta} = \alpha$.
+ %$\beta \in \funs{\naturals}{\alpha}$.
+ %Take $\zeta$ such that $\carrier[\zeta] = \alpha$ and $\indexset[\zeta] = \naturals$ and $\index[\zeta] = \beta$.
+ Omitted.
+ \end{subproof}
- % TODO: Proof that \beta is a function which would be used for the indexing.
-
+ We show that for all $n \in \indexset[\zeta]$ we have $\index[\zeta](n)$ has cardinality $\pot(n)$.
+ \begin{subproof}
+ Trivial.
\end{subproof}
+