summaryrefslogtreecommitdiff
path: root/library
diff options
context:
space:
mode:
Diffstat (limited to 'library')
-rw-r--r--library/topology/urysohn.tex43
-rw-r--r--library/topology/urysohn2.tex30
2 files changed, 53 insertions, 20 deletions
diff --git a/library/topology/urysohn.tex b/library/topology/urysohn.tex
index b8a5fa5..79d65dc 100644
--- a/library/topology/urysohn.tex
+++ b/library/topology/urysohn.tex
@@ -100,6 +100,14 @@ The first tept will be a formalisation of chain constructions.
\subsection{staircase function}
+\begin{definition}\label{minimum}
+ $\min{X} = \{x \in X \mid \forall y \in X. x \leq y \}$.
+\end{definition}
+
+\begin{definition}\label{maximum}
+ $\max{X} = \{x \in X \mid \forall y \in X. x \geq y \}$.
+\end{definition}
+
\begin{definition}\label{intervalclosed}
$\intervalclosed{a}{b} = \{x \in \reals \mid a \leq x \leq b\}$.
\end{definition}
@@ -122,6 +130,9 @@ The first tept will be a formalisation of chain constructions.
\item \label{staircase_chain_is_in_domain} for all $x \in C$ we have $x \subseteq \dom{f}$.
\item \label{staircase_behavoir_index_zero} $f(\index[C](1))= 1$.
\item \label{staircase_behavoir_index_n} $f(\dom{f}\setminus \unions{C}) = \zero$.
+ \item \label{staircase_chain_indeset} There exist $n$ such that $\indexset[C] = \seq{\zero}{n}$.
+ \item \label{staircase_behavoir_index_arbetrray} for all $n \in \indexset[C]$
+ such that $n \neq \zero$ we have $f(\index[C](n) \setminus \index[C](n-1)) = \rfrac{n}{ \max{\indexset[C]} }$.
\end{enumerate}
\end{struct}
@@ -311,13 +322,7 @@ The first tept will be a formalisation of chain constructions.
Omitted.
\end{proof}
-\begin{definition}\label{minimum}
- $\min{X} = \{x \in X \mid \forall y \in X. x \leq y \}$.
-\end{definition}
-\begin{definition}\label{maximum}
- $\max{X} = \{x \in X \mid \forall y \in X. x \geq y \}$.
-\end{definition}
\begin{proposition}\label{urysohnchain_induction_step_existence}
Let $X$ be a urysohn space.
@@ -562,6 +567,16 @@ The first tept will be a formalisation of chain constructions.
Omitted.
\end{subproof}
+ Let $\alpha = \carrier[X]$.
+ %Define $f : \alpha \to \naturals$ such that $f(x) =$
+ %\begin{cases}
+ % & 1 & \text{if} x \in A \lor x \in B
+ % & k & \text{if} \exists k \in \naturals
+ %\end{cases}
+%
+ %We show that there exist $k \in \funs{\carrier[X]}{\reals}$ such that
+ %$k(x)$
+
%For all $n \in \naturals$ we have $\index[\zeta](n)$ is a urysohnchain in $X$.
We show that for all $n \in \indexset[\zeta]$ we have $\index[\zeta](n)$ has cardinality $\pot(n)$.
@@ -581,15 +596,19 @@ The first tept will be a formalisation of chain constructions.
We show that for all $m \in \indexset[\zeta]$ we have there exist $f$ such that $f \in \funs{\carrier[X]}{\intervalclosed{\zero}{1}}$
- and for all $n \in \indexset[\index[\zeta](m)]$ we have for all $x \in \index[\index[\zeta](m)](n)$
+ and for all $n \in \indexset[\index[\zeta](m)]$ we have for all $x \in \index[\index[\zeta](m)](n)$ such that $x \notin \index[\index[\zeta](m)](n-1)$
we have $f(x) = \rfrac{n}{\pot(m)}$.
\begin{subproof}
- % Fix $m \in \indexset[\zeta]$.
- % $\index[\zeta](m)$ is a urysohnchain in $X$.
- %
- % Follows by \cref{existence_of_staircase_function}.
+ Fix $m \in \indexset[\zeta]$.
+ $\index[\zeta](m)$ is a urysohnchain in $X$.
+ Define $o : \alpha \to \intervalclosed{\zero}{1}$ such that $o(x) =$
+ \begin{cases}
+ & 0 & \text{if} x \in A
+ & 1 & \text{if} x \in B
+ & \rfrac{n}{m} & \text{if} \exists n \in \naturals. x \in \index[\index[\zeta](m)](n) \land x \notin \index[\index[\zeta](m)](n-1)
+ \end{cases}
- Omitted.
+
\end{subproof}
diff --git a/library/topology/urysohn2.tex b/library/topology/urysohn2.tex
index 40a3615..71de210 100644
--- a/library/topology/urysohn2.tex
+++ b/library/topology/urysohn2.tex
@@ -68,18 +68,32 @@
Let $H = \carrier[X] \setminus B$.
Let $P = \{x \in \pow{X} \mid x = A \lor x = H \lor (x \in \pow{X} \land (\closure{A}{X} \subseteq \interior{U}{X} \subseteq \closure{U}{X} \subseteq \interior{H}{X}))\}$.
+ Let $\eta = \carrier[X]$.
-
-
- Define $f : X \to \reals$ such that $f(x) = $
+
+ % Provable
+ % vvv
+ Define $F : \eta \to \reals$ such that $F(x) =$
\begin{cases}
- &(x + k) &\text{if} x \in X \land k \in \naturals
- & x &\text{if} x \neq \zero
- & \zero & \text{if} x = \zero
- % & x ,x \in X <- will result in technicly ambigus parse
+ & \zero &\text{if} x \in A\\
+ & \rfrac{1}{1+1} &\text{if} x \in (\carrier[X] \setminus (A \union B))\\
+ & 1 &\text{if} x \in B
\end{cases}
-
+ %Define $f : \naturals \to \pow{P}$ such that $f(x)=$
+ %\begin{cases}
+ % & \emptyset & \text{if} x = \zero \\
+ % & \{A, H\} & \text{if} x = 1 \\
+ % & G & \text{if} x \in (\naturals \setminus \{1, \zero\}) \land G = \{g \in \pow{P} \mid g \in f(n-1) \lor (g \notin f(n-1) \land g \in P) \}
+ %\end{cases}
+
+ Let $D = \{d \mid d \in \rationals \mid \zero \leq d \leq 1\}$.
+ Take $R$ such that for all $q \in D$ we have for all $S \in P$ we have $q \mathrel{R} S$ iff
+ $q = \zero \land S = A$ or $q = 1 \land S = H$ or
+ for all $q_1, q_2, S_1, S_2$
+ such that $q_1 \leq q \leq q_2$ and $q_1 \mathrel{R} S_1$ and $q_2 \mathrel{R} S_2$
+ we have $\closure{S_1}{X} \subseteq \interior{S}{X} \subseteq \closure{S}{X} \subseteq \interior{S_2}{X}$
+ and $q \mathrel{R} S$.
Trivial.