summaryrefslogtreecommitdiff
path: root/library/numbers.tex
blob: a0e2211426a146c515ee917f35f6a3d34cfe71b6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
\import{nat.tex}
\import{order/order.tex}
\import{relation.tex}

\section{The real numbers}

%TODO: Implementing Notion for negativ number such as -x.

%TODO:
%\inv{} für inverse benutzen. Per Signatur einfüheren und dann axiomatisch absicher
%\cdot für multiklikation verwenden. 
%< für die relation benutzen.
% sup und inf einfügen

\begin{signature}
    $\reals$ is a set.
\end{signature}

\begin{signature}
    $x + y$ is a set.
\end{signature}

\begin{signature}
    $x \times y$ is a set.
\end{signature}

\begin{axiom}\label{one_in_reals}
    $1 \in \reals$.
\end{axiom}

\begin{axiom}\label{reals_axiom_order}
    $\lt[\reals]$ is an order on $\reals$.
\end{axiom}

\begin{axiom}\label{reals_axiom_strictorder}
    $\lt[\reals]$ is a strict order.
\end{axiom}

\begin{abbreviation}\label{less_on_reals}
    $x < y$ iff $(x,y) \in \lt[\reals]$.
\end{abbreviation}

\begin{abbreviation}\label{greater_on_reals}
    $x > y$ iff $y < x$.
\end{abbreviation}

\begin{abbreviation}\label{lesseq_on_reals}
    $x \leq y$ iff it is wrong that $x > y$.
\end{abbreviation}

\begin{abbreviation}\label{greatereq_on_reals}
    $x \geq y$ iff it is wrong that $x < y$.
\end{abbreviation}

\begin{axiom}\label{reals_axiom_dense}
    For all $x,y \in \reals$ if $x < y$ then 
    there exist $z \in \reals$ such that $x < z$ and $z < y$.
\end{axiom}

\begin{axiom}\label{reals_axiom_order_def}
    $x < y$ iff there exist $z \in \reals$ such that $\zero < z$ and $x + z = y$.
\end{axiom}

\begin{lemma}\label{reals_one_bigger_than_zero}
    $\zero < 1$.
\end{lemma}


\begin{axiom}\label{reals_axiom_assoc}
    For all $x,y,z \in \reals$ $(x + y) + z = x + (y + z)$ and $(x \times y) \times z = x \times (y \times z)$.
\end{axiom}

\begin{axiom}\label{reals_axiom_kommu}
    For all $x,y \in \reals$ $x + y = y + x$ and $x \times y = y \times x$.
\end{axiom}

\begin{axiom}\label{reals_axiom_zero_in_reals}
    $\zero \in \reals$.
\end{axiom}
  
\begin{axiom}\label{reals_axiom_zero}
    For all $x \in \reals$ $x + \zero = x$. 
\end{axiom}

\begin{axiom}\label{reals_axiom_one}
    For all $x \in \reals$ $1 \neq \zero$ and $x \times 1 = x$.
\end{axiom}

\begin{axiom}\label{reals_axiom_add_invers}
    For all $x \in \reals$ there exist $y \in \reals$ such that $x + y = \zero$.
\end{axiom}


\begin{axiom}\label{reals_axiom_mul_invers}
    For all $x \in \reals$ such that $x \neq \zero$ there exist $y \in \reals$ such that $x \times y = 1$.
\end{axiom}

\begin{axiom}\label{reals_axiom_disstro1}
    For all $x,y,z \in \reals$ $x \times (y + z) = (x \times y) + (x \times z)$.
\end{axiom}

\begin{proposition}\label{reals_disstro2}
    For all $x,y,z \in \reals$ $(y + z) \times x = (y \times x) + (z \times x)$.
\end{proposition}

\begin{proposition}\label{reals_reducion_on_addition}
    For all $x,y,z \in \reals$ if $x + y = x + z$ then $y = z$.
\end{proposition}

\begin{axiom}\label{reals_axiom_dedekind_complete}
    For all $X,Y,x,y$ such that $X,Y \subseteq \reals$ and $x \in X$ and $y \in Y$ and $x < y$ we have there exist $z \in \reals$
    such that $x < z < y$.
\end{axiom}


\begin{lemma}\label{order_reals_lemma1}
    For all $x,y,z \in \reals$ such that $\zero < x$ 
    if $y < z$ 
    then $(y \times x) < (z \times x)$.
\end{lemma}

\begin{lemma}\label{order_reals_lemma2}
    For all $x,y,z \in \reals$ such that $\zero < x$ 
    if $y < z$ 
    then $(x \times y) < (x \times z)$.
\end{lemma}


\begin{lemma}\label{order_reals_lemma3}
    For all $x,y,z \in \reals$ such that $x < \zero$ 
    if $y < z$ 
    then $(x \times z) < (x \times y)$.
\end{lemma}

\begin{lemma}\label{o4rder_reals_lemma}
    For all $x,y \in \reals$ if $x > y$ then $x \geq y$.
\end{lemma}

\begin{lemma}\label{order_reals_lemma5}
    For all $x,y \in \reals$ if $x < y$ then $x \leq y$.
\end{lemma}

\begin{lemma}\label{order_reals_lemma6}
    For all $x,y \in \reals$ if $x \leq y \leq x$ then $x=y$.
\end{lemma}