summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorSimon-Kor <52245124+Simon-Kor@users.noreply.github.com>2024-05-14 16:55:40 +0200
committerSimon-Kor <52245124+Simon-Kor@users.noreply.github.com>2024-05-14 16:55:40 +0200
commit63518b2e0bfdf0308fba30920a7a3bb7f61da994 (patch)
tree24697733874d2b3d23ebee2d86e721d7d3bb1243
parent36d099d58818cc437002fade61fda37968ffa1d2 (diff)
work on metric spaces
-rw-r--r--library/numbers.tex49
-rw-r--r--library/topology/metric-space.tex45
2 files changed, 92 insertions, 2 deletions
diff --git a/library/numbers.tex b/library/numbers.tex
index a0e2211..5dd06da 100644
--- a/library/numbers.tex
+++ b/library/numbers.tex
@@ -144,3 +144,52 @@
For all $x,y \in \reals$ if $x \leq y \leq x$ then $x=y$.
\end{lemma}
+\begin{axiom}\label{reals_axiom_minus}
+ For all $x \in \reals$ $x - x = \zero$.
+\end{axiom}
+
+\begin{lemma}\label{reals_minus}
+ Assume $x,y \in \reals$. If $x - y = \zero$ then $x=y$.
+\end{lemma}
+
+%\begin{definition}\label{reasl_supremum} %expaction "there exists" after \mid
+% $\rsup{X} = \{z \mid \text{ $z \in \reals$ and for all $x,y$ such that $x \in X$ and $y,x \in \reals$ and $x < y$ we have $z \leq y$ }\}$.
+%\end{definition}
+
+\begin{definition}\label{upper_bound}
+ $x$ is an upper bound of $X$ iff for all $y \in X$ we have $x > y$.
+\end{definition}
+
+\begin{definition}\label{least_upper_bound}
+ $x$ is a least upper bound of $X$ iff $x$ is an upper bound of $X$ and for all $y$ such that $y$ is an upper bound of $X$ we have $x \leq y$.
+\end{definition}
+
+\begin{lemma}\label{supremum_unique}
+ %Let $x,y \in \reals$ and let $X$ be a subset of $\reals$.
+ If $x$ is a least upper bound of $X$ and $y$ is a least upper bound of $X$ then $x = y$.
+\end{lemma}
+
+\begin{definition}\label{supremum_reals}
+ $x$ is the supremum of $X$ iff $x$ is a least upper bound of $X$.
+\end{definition}
+
+
+
+
+\begin{definition}\label{lower_bound}
+ $x$ is an lower bound of $X$ iff for all $y \in X$ we have $x < y$.
+\end{definition}
+
+\begin{definition}\label{greatest_lower_bound}
+ $x$ is a greatest lower bound of $X$ iff $x$ is an lower bound of $X$ and for all $y$ such that $y$ is an lower bound of $X$ we have $x \geq y$.
+\end{definition}
+
+\begin{lemma}\label{infimum_unique}
+ %Let $x,y \in \reals$ and let $X$ be a subset of $\reals$.
+ If $x$ is a greatest lower bound of $X$ and $y$ is a greatest lower bound of $X$ then $x = y$.
+\end{lemma}
+
+\begin{definition}\label{infimum_reals}
+ $x$ is the supremum of $X$ iff $x$ is a greatest lower bound of $X$.
+\end{definition}
+
diff --git a/library/topology/metric-space.tex b/library/topology/metric-space.tex
index 2a31d95..8ec83f7 100644
--- a/library/topology/metric-space.tex
+++ b/library/topology/metric-space.tex
@@ -1,6 +1,7 @@
\import{topology/topological-space.tex}
\import{numbers.tex}
\import{function.tex}
+\import{set/powerset.tex}
\section{Metric Spaces}
@@ -17,7 +18,46 @@
$\openball{r}{x}{f} = \{z \in M \mid \text{ $f$ is a metric on $M$ and $f(x,z) < r$ } \}$.
\end{definition}
-%TODO: \metric_opens{d} = {hier die construction für topology}
+
+
+\begin{definition}\label{induced_topology}
+ $O$ is the induced topology of $d$ in $M$ iff
+ $O \subseteq \pow{M}$ and
+ $d$ is a metric on $M$ and
+ for all $x,r,A,B,C$
+ such that $x \in M$ and $r \in \reals$ and $A,B \in O$ and $C$ is a family of subsets of $O$
+ we have $\openball{r}{x}{d} \in O$ and $\unions{C} \in O$ and $A \inter B \in O$.
+\end{definition}
+
+%\begin{definition}
+% $\projcetfirst{A} = \{a \mid \exists x \in X \text{there exist $x \i } \}$
+%\end{definition}
+
+\begin{definition}\label{set_of_balls}
+ $\balls{d}{M} = \{ O \in \pow{M} \mid \text{there exists $x,r$ such that $r \in \reals$ and $x \in M$ we have $O = \openball{r}{x}{d}$ } \}$.
+\end{definition}
+
+
+\begin{definition}\label{toindsas}
+ $\metricopens{d}{M} = \{O \in \pow{M} \mid \text{
+ $d$ is a metric on $M$ and
+ for all $x,r,A,B,C$
+ such that $x \in M$ and $r \in \reals$ and $A,B \in O$ and $C$ is a family of subsets of $O$
+ we have $\openball{r}{x}{d} \in O$ and $\unions{C} \in O$ and $A \inter B \in O$.
+ } \}$.
+
+\end{definition}
+
+\begin{theorem}\label{metric_induce_a_topology}
+
+
+
+\end{theorem}
+
+
+
+
+%TODO: \metric_opens{d} = {hier die construction für topology} DONE.
%TODO: Die induzierte topology definieren und dann in struct verwenden.
@@ -44,7 +84,7 @@
\begin{lemma}\label{union_of_open_balls_is_open}
Let $M$ be a metric space.
- For all $U,V \subseteq M$ if $U$ is an open ball in $M$ and $V$ is an open ball in $M$ then $U \union V$ is open in $M$.
+ For all $U,V \subseteq M$ if $U$, $V$ are open balls in $M$ then $U \union V$ is open in $M$.
\end{lemma}
@@ -56,6 +96,7 @@
+
\begin{lemma}\label{metric_implies_topology}
Let $M$ be a set, and let $f$ be a metric on $M$.
Then $M$ is a metric space.