summaryrefslogtreecommitdiff
path: root/library/set.tex
diff options
context:
space:
mode:
authorSimon-Kor <52245124+Simon-Kor@users.noreply.github.com>2024-05-28 17:36:49 +0200
committerGitHub <noreply@github.com>2024-05-28 17:36:49 +0200
commit68598ccc2e420376a790b31b93efa7f18f91edf6 (patch)
tree6ca3ecd36d8d84ea7153d74cab73361052d03565 /library/set.tex
parent266529fa1271a942920845072efb588c64c4aba3 (diff)
parenta08c4b2d7a7135029a588df542c18fdf07725075 (diff)
Merge pull request #2 from adelon/main
changes from main needs to be included
Diffstat (limited to 'library/set.tex')
-rw-r--r--library/set.tex19
1 files changed, 8 insertions, 11 deletions
diff --git a/library/set.tex b/library/set.tex
index 33e5af4..2fd18ea 100644
--- a/library/set.tex
+++ b/library/set.tex
@@ -131,8 +131,7 @@ which applies it to goals of the form “$A = B$” and “$A \neq B$”.
If $x$ and $y$ are empty, then $x = y$.
\end{proposition}
-\begin{proposition}%
-\label{emptyset_subseteq}
+\begin{proposition}\label{emptyset_subseteq}
For all $a$ we have $\emptyset \subseteq a$.
% LATER $\emptyset$ is a subset of every set.
\end{proposition}
@@ -266,8 +265,7 @@ The $\operatorname{\textsf{cons}}$ operation is determined by the following axio
There exists $B\in C$ such that $A\in B$.
\end{proof}
-\begin{proposition}%
-\label{unions_emptyset}
+\begin{proposition}\label{unions_emptyset}
$\unions{\emptyset} = \emptyset$.
\end{proposition}
@@ -553,13 +551,7 @@ The $\operatorname{\textsf{cons}}$ operation is determined by the following axio
Follows by set extensionality.
\end{proof}
-\begin{proposition}%
-\label{inter_subseteq}
- $A\inter B\subseteq A$.
-\end{proposition}
-
-\begin{proposition}%
-\label{inter_emptyset}
+\begin{proposition}\label{inter_emptyset}
$A\inter\emptyset = \emptyset$.
\end{proposition}
\begin{proof}
@@ -620,6 +612,11 @@ The $\operatorname{\textsf{cons}}$ operation is determined by the following axio
Follows by set extensionality.
\end{proof}
+\begin{proposition}\label{inter_subseteq}
+ Suppose $A,B\subseteq C$.
+ Then $A\inter B\subseteq C$.
+\end{proposition}
+
\begin{abbreviation}\label{closedunderinter}
$T$ is closed under binary intersections
iff for every $U,V\in T$ we have $U\inter V\in T$.