diff options
| author | Simon-Kor <52245124+Simon-Kor@users.noreply.github.com> | 2024-05-28 17:36:49 +0200 |
|---|---|---|
| committer | GitHub <noreply@github.com> | 2024-05-28 17:36:49 +0200 |
| commit | 68598ccc2e420376a790b31b93efa7f18f91edf6 (patch) | |
| tree | 6ca3ecd36d8d84ea7153d74cab73361052d03565 /library/topology/basis.tex | |
| parent | 266529fa1271a942920845072efb588c64c4aba3 (diff) | |
| parent | a08c4b2d7a7135029a588df542c18fdf07725075 (diff) | |
Merge pull request #2 from adelon/main
changes from main needs to be included
Diffstat (limited to 'library/topology/basis.tex')
| -rw-r--r-- | library/topology/basis.tex | 36 |
1 files changed, 11 insertions, 25 deletions
diff --git a/library/topology/basis.tex b/library/topology/basis.tex index 6fc07d3..6fa9fbd 100644 --- a/library/topology/basis.tex +++ b/library/topology/basis.tex @@ -47,8 +47,8 @@ \end{definition} \begin{definition}\label{genopens} - $\genOpens{B}{X} = \{ U\in\pow{X} \mid \text{for all $x\in U$ there exists $V\in B$ - such that $x\in V\subseteq U$} \}$. + $\genOpens{B}{X} = \left\{ U\in\pow{X} \middle| \textbox{for all $x\in U$ there exists $V\in B$ + \\ such that $x\in V\subseteq U$}\right\}$. \end{definition} \begin{lemma}\label{emptyset_in_genopens} @@ -75,32 +75,25 @@ \end{proof} - - \begin{lemma}\label{inters_in_genopens} Assume $B$ is a topological basis for $X$. - Suppose $A, C\in \genOpens{B}{X}$. - + Assume $A, C\in \genOpens{B}{X}$. Then $(A\inter C) \in \genOpens{B}{X}$. \end{lemma} \begin{proof} - - Show $(A \inter C) \in \pow{X}$. - \begin{subproof} - Omitted. - \end{subproof} - + + We have $(A \inter C) \in \pow{X}$ by \cref{genopens,inter_powerset}. + Show for all $x\in (A\inter C)$ there exists $W \in B$ such that $x\in W$ and $W \subseteq (A\inter C)$. \begin{subproof} Fix $x \in (A\inter C)$. - $x \in A,C$. - There exist $V' \in B$ such that $x \in V'$ and $V' \subseteq A$ by \cref{genopens}. - There exist $V'' \in B$ such that $x \in V''$ and $V'' \subseteq C$ by \cref{genopens}. - $x \in (V' \inter V'')$. - There exist $W \in B$ such that $x \in W$ and $W \subseteq V'$ and $W \subseteq V''$. - + Then $x\in A,C$. + There exists $V' \in B$ such that $x \in V' \subseteq A$ by \cref{genopens}. + There exists $V'' \in B$ such that $x \in V''\subseteq C$ by \cref{genopens}. + There exists $W \in B$ such that $x \in W$ and $W \subseteq V'$ and $W \subseteq V''$. + Show $W \subseteq (A\inter C)$. \begin{subproof} %$W \subseteq v'$ and $W \subseteq V''$. @@ -111,11 +104,4 @@ %such that $x\in W$ and $W \subseteq (A\inter C)$. $(A\inter C) \in \genOpens{B}{X}$. - - \end{proof} - - - - - |
