summaryrefslogtreecommitdiff
path: root/library/topology
diff options
context:
space:
mode:
authorSimon-Kor <52245124+Simon-Kor@users.noreply.github.com>2024-05-28 17:36:49 +0200
committerGitHub <noreply@github.com>2024-05-28 17:36:49 +0200
commit68598ccc2e420376a790b31b93efa7f18f91edf6 (patch)
tree6ca3ecd36d8d84ea7153d74cab73361052d03565 /library/topology
parent266529fa1271a942920845072efb588c64c4aba3 (diff)
parenta08c4b2d7a7135029a588df542c18fdf07725075 (diff)
Merge pull request #2 from adelon/main
changes from main needs to be included
Diffstat (limited to 'library/topology')
-rw-r--r--library/topology/basis.tex36
-rw-r--r--library/topology/topological-space.tex10
2 files changed, 20 insertions, 26 deletions
diff --git a/library/topology/basis.tex b/library/topology/basis.tex
index 6fc07d3..6fa9fbd 100644
--- a/library/topology/basis.tex
+++ b/library/topology/basis.tex
@@ -47,8 +47,8 @@
\end{definition}
\begin{definition}\label{genopens}
- $\genOpens{B}{X} = \{ U\in\pow{X} \mid \text{for all $x\in U$ there exists $V\in B$
- such that $x\in V\subseteq U$} \}$.
+ $\genOpens{B}{X} = \left\{ U\in\pow{X} \middle| \textbox{for all $x\in U$ there exists $V\in B$
+ \\ such that $x\in V\subseteq U$}\right\}$.
\end{definition}
\begin{lemma}\label{emptyset_in_genopens}
@@ -75,32 +75,25 @@
\end{proof}
-
-
\begin{lemma}\label{inters_in_genopens}
Assume $B$ is a topological basis for $X$.
- Suppose $A, C\in \genOpens{B}{X}$.
-
+ Assume $A, C\in \genOpens{B}{X}$.
Then $(A\inter C) \in \genOpens{B}{X}$.
\end{lemma}
\begin{proof}
-
- Show $(A \inter C) \in \pow{X}$.
- \begin{subproof}
- Omitted.
- \end{subproof}
-
+
+ We have $(A \inter C) \in \pow{X}$ by \cref{genopens,inter_powerset}.
+
Show for all $x\in (A\inter C)$ there exists $W \in B$
such that $x\in W$ and $W \subseteq (A\inter C)$.
\begin{subproof}
Fix $x \in (A\inter C)$.
- $x \in A,C$.
- There exist $V' \in B$ such that $x \in V'$ and $V' \subseteq A$ by \cref{genopens}.
- There exist $V'' \in B$ such that $x \in V''$ and $V'' \subseteq C$ by \cref{genopens}.
- $x \in (V' \inter V'')$.
- There exist $W \in B$ such that $x \in W$ and $W \subseteq V'$ and $W \subseteq V''$.
-
+ Then $x\in A,C$.
+ There exists $V' \in B$ such that $x \in V' \subseteq A$ by \cref{genopens}.
+ There exists $V'' \in B$ such that $x \in V''\subseteq C$ by \cref{genopens}.
+ There exists $W \in B$ such that $x \in W$ and $W \subseteq V'$ and $W \subseteq V''$.
+
Show $W \subseteq (A\inter C)$.
\begin{subproof}
%$W \subseteq v'$ and $W \subseteq V''$.
@@ -111,11 +104,4 @@
%such that $x\in W$ and $W \subseteq (A\inter C)$.
$(A\inter C) \in \genOpens{B}{X}$.
-
-
\end{proof}
-
-
-
-
-
diff --git a/library/topology/topological-space.tex b/library/topology/topological-space.tex
index e467d48..2bbdf09 100644
--- a/library/topology/topological-space.tex
+++ b/library/topology/topological-space.tex
@@ -11,7 +11,6 @@
such that
\begin{enumerate}
\item\label{opens_type} $\opens[X]$ is a family of subsets of $\carrier[X]$.
- \item\label{emptyset_open} $\emptyset\in\opens[X]$.
\item\label{carrier_open} $\carrier[X]\in\opens[X]$.
\item\label{opens_inter} For all $A, B\in \opens[X]$ we have $A\inter B\in\opens[X]$.
\item\label{opens_unions} For all $F\subseteq \opens[X]$ we have $\unions{F}\in\opens[X]$.
@@ -26,6 +25,15 @@
$U$ is open in $X$ iff $U\in\opens[X]$.
\end{abbreviation}
+\begin{proposition}\label{emptyset_open}
+ Let $X$ be a topological space.
+ Then $\emptyset$ is open in $X$.
+\end{proposition}
+\begin{proof}
+ We have $\unions{\emptyset} = \emptyset\subseteq\opens[X]$ by \cref{unions_emptyset,emptyset_subseteq}.
+ Follows by \cref{opens_unions}.
+\end{proof}
+
\begin{proposition}\label{union_open}
Let $X$ be a topological space.
Suppose $A$, $B$ are open.