summaryrefslogtreecommitdiff
path: root/library/topology/order-topology.tex
diff options
context:
space:
mode:
authorSimon-Kor <52245124+Simon-Kor@users.noreply.github.com>2024-05-07 14:41:15 +0200
committerSimon-Kor <52245124+Simon-Kor@users.noreply.github.com>2024-05-07 14:41:15 +0200
commit3795588d157864a411baf2fc3afb31f9f5184d93 (patch)
tree17e6df25e78c5a1f6453dc64b5b03c0222c91941 /library/topology/order-topology.tex
parent937c05e9386dde23432f229e5bc32a1530b26477 (diff)
Formalization of metric spaces and some cleaning of numbers.tex
Formalization of metric spaces: Therefore we introduced the predicate metric and its axiomatization. Then we introduced the term metric space in dependence of a metric function. This metric space is automatically a a topological space.
Diffstat (limited to 'library/topology/order-topology.tex')
-rw-r--r--library/topology/order-topology.tex32
1 files changed, 29 insertions, 3 deletions
diff --git a/library/topology/order-topology.tex b/library/topology/order-topology.tex
index afa8755..2dd026d 100644
--- a/library/topology/order-topology.tex
+++ b/library/topology/order-topology.tex
@@ -1,7 +1,33 @@
\import{topology/topological-space.tex}
+\import{order/order.tex}
\section{Order Topology}
-\begin{definition}
- A
-\end{definition}
+\begin{abbreviation}\label{open_interval}
+ $z \in \oointervalof{x}{y}$ iff $x \mathrel{R} y$ and $x \mathrel{R} z$ and $z \mathrel{R} y$.
+ %$\oointervalof{x}{y}{X} = \{ z \mid x \in X, y \in X, z \in X x \mathrel{R} y \wedge x \mathrel{R} z \wedge z \mathrel{R} y\}$.
+\end{abbreviation}
+
+\begin{struct}\label{order_topology}
+ A ordertopology space $X$ is a onesorted structure equipped with
+ \begin{enumerate}
+ \item $<$
+ \end{enumerate}
+ such that
+ \begin{enumerate}
+ \item \label{order_topology_1} $<$ is a strict order on $X$
+ \item \label{order_topology_2}
+ \item \label{order_topology_3}
+ \item \label{order_topology_4}
+ \item \label{order_topology}
+ \item \label{order_topology}
+ \item \label{order_topology}
+ \end{enumerate}
+\end{struct}
+
+
+
+%\begin{definition}\label{order_topology}
+% $X$ has the order topology iff for all $x,y \in X$ $X$ has a strict order $R$ and $\oointervalof{x}{y}{X} \in \opens[X]$ and $X$ is a topological space.
+% %$O$ is the order Topology on $X$ iff for all $x,y \in X$ $X$ has a strict order $R$ and $(x,y) \in O$ and $O$ is .
+%\end{definition}