diff options
| author | Simon-Kor <52245124+Simon-Kor@users.noreply.github.com> | 2024-08-24 11:43:29 +0200 |
|---|---|---|
| committer | Simon-Kor <52245124+Simon-Kor@users.noreply.github.com> | 2024-08-24 11:43:29 +0200 |
| commit | 29027c9d2cdbdfe59e48b5aa28eb2d32d1a4c1f7 (patch) | |
| tree | 65a7689cc8ba001a7e914f8523fdc2c9e8c600c0 /library/topology/urysohn.tex | |
| parent | d5b31ee7dc5992687f214d77e795bab53d5fe65d (diff) | |
naproch sty extension
Diffstat (limited to 'library/topology/urysohn.tex')
| -rw-r--r-- | library/topology/urysohn.tex | 33 |
1 files changed, 19 insertions, 14 deletions
diff --git a/library/topology/urysohn.tex b/library/topology/urysohn.tex index c3c72f0..b8a5fa5 100644 --- a/library/topology/urysohn.tex +++ b/library/topology/urysohn.tex @@ -504,26 +504,31 @@ The first tept will be a formalisation of chain constructions. -\begin{definition}\label{sequencetwo} - $Z$ is a sequencetwo iff $Z = (N,f,B)$ and $N \subseteq \naturals$ and $f$ is a bijection from $N$ to $B$. -\end{definition} - -\begin{proposition}\label{sequence_existence} - Suppose $N \subseteq \naturals$. - Suppose $M \subseteq \naturals$. - Suppose $N = M$. - Then there exist $Z,f$ such that $f$ is a bijection from $N$ to $M$ and $Z=(N,f,M)$ and $Z$ is a sequencetwo. -\end{proposition} -\begin{proof} - Let $f(x) = x$ for $x \in N$. - Let $Z=(N,f,M)$. -\end{proof} +%\begin{definition}\label{sequencetwo} +% $Z$ is a sequencetwo iff $Z = (N,f,B)$ and $N \subseteq \naturals$ and $f$ is a bijection from $N$ to $B$. +%\end{definition} +% +%\begin{proposition}\label{sequence_existence} +% Suppose $N \subseteq \naturals$. +% Suppose $M \subseteq \naturals$. +% Suppose $N = M$. +% Then there exist $Z,f$ such that $f$ is a bijection from $N$ to $M$ and $Z=(N,f,M)$ and $Z$ is a sequencetwo. +%\end{proposition} +%\begin{proof} +% Let $f(x) = x$ for $x \in N$. +% Let $Z=(N,f,M)$. +%\end{proof} %The proposition above and the definition prove false together with % ordinal_subseteq_unions, omega_is_an_ordinal, powerset_intro, in_irrefl + + + + + \begin{theorem}\label{urysohn} Let $X$ be a urysohn space. Suppose $A,B \in \closeds{X}$. |
