summaryrefslogtreecommitdiff
path: root/library/topology
diff options
context:
space:
mode:
authorSimon-Kor <52245124+Simon-Kor@users.noreply.github.com>2024-09-05 16:13:04 +0200
committerSimon-Kor <52245124+Simon-Kor@users.noreply.github.com>2024-09-05 16:13:04 +0200
commit12f360a500d5edddf83afa121a5a08b6a6408815 (patch)
treec568b5cf5f33af8cf5ea6ee6f77efd34af779325 /library/topology
parente1d55f672b063f9347c0c9718ae5cdca9a370dba (diff)
Precondtion failed in line 161 urysohn2.tex
Error: zf: Precondition failed in encodeTerm, cannot encode terms with comprehensions directly: TermSep (NamedVar "n") (TermSymbol (SymbolMixfix [Just (Command "naturals")]) []) (Scope (TermSymbol (SymbolPredicate (PredicateRelation (Command "rless"))) [TermSymbol (SymbolInteger 1) [],TermVar (B ())])) CallStack (from HasCallStack): error, called at source/Encoding.hs:89:13 in zf-0.3.0.0-3mIpbM9y9fK3yXjxxoLDb2:Encoding
Diffstat (limited to 'library/topology')
-rw-r--r--library/topology/urysohn2.tex138
1 files changed, 133 insertions, 5 deletions
diff --git a/library/topology/urysohn2.tex b/library/topology/urysohn2.tex
index 93819dc..396255e 100644
--- a/library/topology/urysohn2.tex
+++ b/library/topology/urysohn2.tex
@@ -100,17 +100,129 @@
%If $n$ is a natural number then $n$ is \in-transitive and every element of $n$ is \in-transitive.
\end{proposition}
+\begin{proposition}\label{natural_number_is_ordinal_for_all}
+ For all $n \in \naturals$ we have $n$ is a ordinal.
+\end{proposition}
+
\begin{proposition}\label{zero_is_in_minimal}
$\zero$ is an \in-minimal element of $\naturals$.
\end{proposition}
-\begin{proposition}\label{naturals_leq}
- For all $n \in \naturals$ we have $\zero \leq n$.
+\begin{proposition}\label{natural_rless_eq_precedes}
+ For all $n,m \in \naturals$ we have $n \precedes m$ iff $n \in m$.
+\end{proposition}
+
+\begin{proposition}\label{naturals_precedes_suc}
+ For all $n \in \naturals$ we have $n \precedes \suc{n}$.
+\end{proposition}
+
+\begin{proposition}\label{zero_is_empty}
+ There exists no $x$ such that $x \in \zero$.
+\end{proposition}
+
+\begin{proposition}\label{one_is_positiv}
+ $1$ is positiv.
+\end{proposition}
+
+\begin{proposition}\label{suc_of_positive_is_positive}
+ For all $n \in \naturals$ such that $n$ is positiv we have $\suc{n}$ is positiv.
+\end{proposition}
+
+\begin{proposition}\label{naturals_are_positiv_besides_zero}
+ For all $n \in \naturals$ such that $n \neq \zero$ we have $n$ is positiv.
+\end{proposition}
+\begin{proof}[Proof by \in-induction on $n$]
+ Assume $n \in \naturals$.
+ \begin{byCase}
+ \caseOf{$n = \zero$.} Trivial.
+ \caseOf{$n \neq \zero$.}
+ Take $k \in \naturals$ such that $\suc{k} = n$.
+ \end{byCase}
+\end{proof}
+
+
+
+\begin{proposition}\label{naturals_sum_eq_zero}
+ For all $n,m \in \naturals$ we have if $n+m = \zero$ then $n = m = \zero$.
\end{proposition}
\begin{proof}
Omitted.
\end{proof}
+\begin{proposition}\label{no_natural_between_n_and_suc_n}
+ For all $n,m \in \naturals$ we have not $n < m < \suc{n}$.
+\end{proposition}
+
+\begin{proposition}\label{naturals_rless_existence_of_lesser_natural}
+ For all $n \in \naturals$ we have for all $m \in \naturals$ such that $m < n$ there exist $k \in \naturals$ such that $m + k = n$.
+\end{proposition}
+\begin{proof}[Proof by \in-induction on $n$]
+ Assume $n \in \naturals$.
+ We show that $\naturals = (\{\zero, 1\} \union \{n \in \naturals \mid n > 1\})$.
+ \begin{subproof}
+ Trivial.
+ \end{subproof}
+ \begin{byCase}
+ \caseOf{$n = \zero$.}
+
+ We show that for all $m \in \naturals$ such that $m < n$ we have there exist $k \in \naturals$ such that $m + k = n$.
+ \begin{subproof}[Proof by \in-induction on $m$]
+ Assume $m \in \naturals$.
+ \begin{byCase}
+ \caseOf{$m = \zero$.}
+ Trivial.
+ \caseOf{$m \neq \zero$.}
+ Trivial.
+ \end{byCase}
+ \end{subproof}
+ \caseOf{$n = 1$.}
+ Fix $m$.
+ For all $l \in \naturals$ we have If $l < 1$ then $l = \zero$.
+ Then $\zero + 1 = 1$.
+ \caseOf{$n > 1$.}
+ Take $l \in \naturals$ such that $\suc{l} = n$.
+ Omitted.
+ \end{byCase}
+\end{proof}
+
+
+\begin{proposition}\label{rless_eq_in_for_naturals}
+ For all $n,m \in \naturals$ such that $n < m$ we have $n \in m$.
+\end{proposition}
+\begin{proof}
+ We show that for all $n \in \naturals$ we have for all $m \in \naturals$ such that $m < n$ we have $m \in n$.
+ \begin{subproof}[Proof by \in-induction on $n$]
+ Assume $n \in \naturals$.
+ We show that for all $m \in \naturals$ such that$m < n$ we have $m \in n$.
+ \begin{subproof}[Proof by \in-induction on $m$]
+ Assume $m \in \naturals$.
+ %\begin{byCase}
+ %
+ %\end{byCase}
+ \end{subproof}
+ \end{subproof}
+
+ %Fix $n \in \naturals$.
+
+ %\begin{byCase}
+ % \caseOf{$n = \zero$.}
+ % For all $k \in \naturals$ we have $k = \zero$ or $\zero < k$.
+ %
+ % \caseOf{$n \neq \zero$.}
+ % Fix $m \in \naturals$.
+ % It suffices to show that $m \in n$.
+ %\end{byCase}
+
+\end{proof}
+
+
+
+\begin{proposition}\label{naturals_leq}
+ For all $n \in \naturals$ we have $\zero \leq n$.
+\end{proposition}
+
+
+
\begin{proposition}\label{naturals_leq_on_suc}
For all $n,m \in \naturals$ such that $m < \suc{n}$ we have $m \leq n$.
\end{proposition}
@@ -157,11 +269,27 @@
\end{subproof}
We show that $\seq{\zero}{k} \union \{n\} \subseteq \seq{\zero}{n}$.
\begin{subproof}
+ It suffices to show that for all $x \in \seq{\zero}{k} \union \{n\}$ we have $x \in \seq{\zero}{n}$.
$k \leq n$ by \cref{naturals_subseteq_reals,suc_eq_plus_one,plus_one_order,subseteq}.
$k \in n$.
- $\seq{\zero}{k} = k$ by \cref{}.
- We have $\seq{\zero}{k} \subseteq \seq{\zero}{n}$.
- $n \in \seq{\zero}{n}$.
+ $\seq{\zero}{k} = \suc{k}$ by assumption.
+ $n \in \naturals$.
+ $\zero \leq n$.
+ $n \leq n$.
+ We have $n \in \seq{\zero}{n}$.
+ Therefore $\seq{\zero}{n}$ is inhabited.
+ Take $x$ such that $x \in \seq{\zero}{n}$.
+ Therefore $\zero \leq x \leq n$.
+ $x = n$ or $x < n$.
+ Then either $x = n$ or $x \leq k$.
+ Therefore $x \in \seq{\zero}{k}$ or $x = n$.
+ Fix $x$.
+ \begin{byCase}
+ \caseOf{$x \in \seq{\zero}{k}$.}
+ Trivial.
+ \caseOf{$x = n$.}
+ It suffices to show that $n \in \seq{\zero}{n}$.
+ \end{byCase}
\end{subproof}
Trivial.
\end{subproof}