diff options
| author | Simon-Kor <52245124+Simon-Kor@users.noreply.github.com> | 2024-08-14 10:50:26 +0200 |
|---|---|---|
| committer | Simon-Kor <52245124+Simon-Kor@users.noreply.github.com> | 2024-08-14 10:50:26 +0200 |
| commit | 5a7450eedc020867ee52ae9f1ecb6def7aa998bb (patch) | |
| tree | 4ffcb59559ad4631e49802ef1aa6e7e19b3031da /library/topology | |
| parent | ee24a73a01608125e6648f7b66d9c679e955009d (diff) | |
The added proposition and definition should have
resloved some proofing complications, but
they can prove flase together with lemmas about
ordinal, the exat lemma are in urysohn.tex at
line 522.
Diffstat (limited to 'library/topology')
| -rw-r--r-- | library/topology/urysohn.tex | 23 |
1 files changed, 18 insertions, 5 deletions
diff --git a/library/topology/urysohn.tex b/library/topology/urysohn.tex index ba9780a..c3c72f0 100644 --- a/library/topology/urysohn.tex +++ b/library/topology/urysohn.tex @@ -503,11 +503,24 @@ The first tept will be a formalisation of chain constructions. -% Note this could maybe reslove some issues!!!! + \begin{definition}\label{sequencetwo} $Z$ is a sequencetwo iff $Z = (N,f,B)$ and $N \subseteq \naturals$ and $f$ is a bijection from $N$ to $B$. \end{definition} +\begin{proposition}\label{sequence_existence} + Suppose $N \subseteq \naturals$. + Suppose $M \subseteq \naturals$. + Suppose $N = M$. + Then there exist $Z,f$ such that $f$ is a bijection from $N$ to $M$ and $Z=(N,f,M)$ and $Z$ is a sequencetwo. +\end{proposition} +\begin{proof} + Let $f(x) = x$ for $x \in N$. + Let $Z=(N,f,M)$. +\end{proof} +%The proposition above and the definition prove false together with +% ordinal_subseteq_unions, omega_is_an_ordinal, powerset_intro, in_irrefl + @@ -544,7 +557,7 @@ The first tept will be a formalisation of chain constructions. Omitted. \end{subproof} - For all $n \in \naturals$ we have $\index[\zeta](n)$ is a urysohnchain in $X$. + %For all $n \in \naturals$ we have $\index[\zeta](n)$ is a urysohnchain in $X$. We show that for all $n \in \indexset[\zeta]$ we have $\index[\zeta](n)$ has cardinality $\pot(n)$. \begin{subproof} @@ -824,6 +837,6 @@ The first tept will be a formalisation of chain constructions. % \end{subproof} \end{proof} -%\begin{theorem}\label{safe} -% Contradiction. -%\end{theorem} +\begin{theorem}\label{safe} + Contradiction. +\end{theorem} |
