summaryrefslogtreecommitdiff
path: root/library/topology
diff options
context:
space:
mode:
authorSimon-Kor <52245124+Simon-Kor@users.noreply.github.com>2024-08-14 10:50:26 +0200
committerSimon-Kor <52245124+Simon-Kor@users.noreply.github.com>2024-08-14 10:50:26 +0200
commit5a7450eedc020867ee52ae9f1ecb6def7aa998bb (patch)
tree4ffcb59559ad4631e49802ef1aa6e7e19b3031da /library/topology
parentee24a73a01608125e6648f7b66d9c679e955009d (diff)
The added proposition and definition should have
resloved some proofing complications, but they can prove flase together with lemmas about ordinal, the exat lemma are in urysohn.tex at line 522.
Diffstat (limited to 'library/topology')
-rw-r--r--library/topology/urysohn.tex23
1 files changed, 18 insertions, 5 deletions
diff --git a/library/topology/urysohn.tex b/library/topology/urysohn.tex
index ba9780a..c3c72f0 100644
--- a/library/topology/urysohn.tex
+++ b/library/topology/urysohn.tex
@@ -503,11 +503,24 @@ The first tept will be a formalisation of chain constructions.
-% Note this could maybe reslove some issues!!!!
+
\begin{definition}\label{sequencetwo}
$Z$ is a sequencetwo iff $Z = (N,f,B)$ and $N \subseteq \naturals$ and $f$ is a bijection from $N$ to $B$.
\end{definition}
+\begin{proposition}\label{sequence_existence}
+ Suppose $N \subseteq \naturals$.
+ Suppose $M \subseteq \naturals$.
+ Suppose $N = M$.
+ Then there exist $Z,f$ such that $f$ is a bijection from $N$ to $M$ and $Z=(N,f,M)$ and $Z$ is a sequencetwo.
+\end{proposition}
+\begin{proof}
+ Let $f(x) = x$ for $x \in N$.
+ Let $Z=(N,f,M)$.
+\end{proof}
+%The proposition above and the definition prove false together with
+% ordinal_subseteq_unions, omega_is_an_ordinal, powerset_intro, in_irrefl
+
@@ -544,7 +557,7 @@ The first tept will be a formalisation of chain constructions.
Omitted.
\end{subproof}
- For all $n \in \naturals$ we have $\index[\zeta](n)$ is a urysohnchain in $X$.
+ %For all $n \in \naturals$ we have $\index[\zeta](n)$ is a urysohnchain in $X$.
We show that for all $n \in \indexset[\zeta]$ we have $\index[\zeta](n)$ has cardinality $\pot(n)$.
\begin{subproof}
@@ -824,6 +837,6 @@ The first tept will be a formalisation of chain constructions.
% \end{subproof}
\end{proof}
-%\begin{theorem}\label{safe}
-% Contradiction.
-%\end{theorem}
+\begin{theorem}\label{safe}
+ Contradiction.
+\end{theorem}