summaryrefslogtreecommitdiff
path: root/library/numbers.tex
diff options
context:
space:
mode:
authorSimon-Kor <52245124+Simon-Kor@users.noreply.github.com>2024-05-07 14:41:15 +0200
committerSimon-Kor <52245124+Simon-Kor@users.noreply.github.com>2024-05-07 14:41:15 +0200
commit3795588d157864a411baf2fc3afb31f9f5184d93 (patch)
tree17e6df25e78c5a1f6453dc64b5b03c0222c91941 /library/numbers.tex
parent937c05e9386dde23432f229e5bc32a1530b26477 (diff)
Formalization of metric spaces and some cleaning of numbers.tex
Formalization of metric spaces: Therefore we introduced the predicate metric and its axiomatization. Then we introduced the term metric space in dependence of a metric function. This metric space is automatically a a topological space.
Diffstat (limited to 'library/numbers.tex')
-rw-r--r--library/numbers.tex72
1 files changed, 37 insertions, 35 deletions
diff --git a/library/numbers.tex b/library/numbers.tex
index 93623fa..afb7d3f 100644
--- a/library/numbers.tex
+++ b/library/numbers.tex
@@ -4,6 +4,14 @@
\section{The real numbers}
+%TODO: Implementing Notion for negativ number such as -x.
+
+%TODO:
+%\inv{} für inverse benutzen. Per Signatur einfüheren und dann axiomatisch absicher
+%\cdot für multiklikation verwenden.
+%< für die relation benutzen.
+
+
\begin{signature}
$\reals$ is a set.
\end{signature}
@@ -22,19 +30,31 @@
\begin{axiom}\label{reals_axiom_order}
$\lt[\reals]$ is an order on $\reals$.
- %$\reals$ is an ordered set.
\end{axiom}
\begin{axiom}\label{reals_axiom_strictorder}
$\lt[\reals]$ is a strict order.
\end{axiom}
+\begin{abbreviation}\label{less_on_reals}
+ $x < y$ iff $(x,y) \in \lt[\reals]$.
+\end{abbreviation}
+
+\begin{abbreviation}\label{greater_on_reals}
+ $x > y$ iff $y < x$.
+\end{abbreviation}
+
+\begin{abbreviation}\label{lesseq_on_reals}
+ $x \leq y$ iff it is wrong that $x > y$.
+\end{abbreviation}
+
+\begin{abbreviation}\label{greatereq_on_reals}
+ $x \geq y$ iff it is wrong that $x < y$.
+\end{abbreviation}
+
\begin{axiom}\label{reals_axiom_dense}
For all $x,y \in \reals$ if $(x,y)\in \lt[\reals]$ then
there exist $z \in \reals$ such that $(x,z) \in \lt[\reals]$ and $(z,y) \in \lt[\reals]$.
-
- %For all $X,Y \subseteq \reals$ if for all $x,y$ $x\in X$ and $y \in Y$ such that $x \lt[\reals] y$
- %then there exist a $z \in \reals$ such that if $x \neq z$ and $y \neq z$ $x \lt[\reals] z$ and $z \lt[\reals] y$.
\end{axiom}
\begin{axiom}\label{reals_axiom_order_def}
@@ -57,18 +77,12 @@
\begin{axiom}\label{reals_axiom_zero_in_reals}
$\zero \in \reals$.
\end{axiom}
-
-%\begin{axiom}\label{reals_axiom_one_in_reals}
-% $\one \in \reals$.
-%\end{axiom}
-
+
\begin{axiom}\label{reals_axiom_zero}
- %There exist $\zero \in \reals$ such that
For all $x \in \reals$ $x + \zero = x$.
\end{axiom}
\begin{axiom}\label{reals_axiom_one}
- %There exist $1 \in \reals$ such that
For all $x \in \reals$ $1 \neq \zero$ and $x \times 1 = x$.
\end{axiom}
@@ -76,11 +90,6 @@
For all $x \in \reals$ there exist $y \in \reals$ such that $x + y = \zero$.
\end{axiom}
-%TODO: Implementing Notion for negativ number such as -x.
-
-%\begin{abbreviation}\label{reals_notion_minus}
-% $y = -x$ iff $x + y = \zero$.
-%\end{abbreviation} %This abbrevation result in a killed process.
\begin{axiom}\label{reals_axiom_mul_invers}
For all $x \in \reals$ there exist $y \in \reals$ such that $x \neq \zero$ and $x \times y = 1$.
@@ -98,27 +107,8 @@
For all $x,y,z \in \reals$ if $x + y = x + z$ then $y = z$.
\end{proposition}
-\begin{signature}
- $\invers$ is a set.
-\begin{signature}
-
-%TODO:
-%x \rless y in einer signatur hinzufügen und dann axiom x+z = y und dann \rlt in def per iff
-%\inv{} für inverse benutzen. Per Signatur einfüheren und dann axiomatisch absicher
-%\cdot für multiklikation verwenden.
-%< für die relation benutzen.
-
-%\begin{signature}
-% $y^{\rightarrow}$ is a function.
-%\end{signature}
-%\begin{axiom}\label{notion_multi_invers}
-% If $y \in \reals$ then $\invers{y} \in \reals$ and $y \times y^{\rightarrow} = 1$.
-%\end{axiom}
-%\begin{abbreviation}\label{notion_fraction}
-% $\frac{x}{y} = x \times y^{\rightarrow}$.
-%\end{abbreviation}
\begin{lemma}\label{order_reals_lemma1}
For all $x,y,z \in \reals$ such that $(\zero,x) \in \lt[\reals]$
@@ -138,3 +128,15 @@
if $(y,z) \in \lt[\reals]$
then $((x \times z), (x \times y)) \in \lt[\reals]$.
\end{lemma}
+
+\begin{lemma}\label{a}
+ For all $x,y \in \reals$ if $x > y$ then $x \geq y$.
+\end{lemma}
+
+\begin{lemma}\label{aa}
+ For all $x,y \in \reals$ if $x < y$ then $x \leq y$.
+\end{lemma}
+
+\begin{lemma}\label{aaa}
+ For all $x,y \in \reals$ if $x \leq y \leq x$ then $x=y$.
+\end{lemma} \ No newline at end of file