summaryrefslogtreecommitdiff
path: root/library/topology
diff options
context:
space:
mode:
authoradelon <22380201+adelon@users.noreply.github.com>2024-02-10 02:22:14 +0100
committeradelon <22380201+adelon@users.noreply.github.com>2024-02-10 02:22:14 +0100
commit442d732696ad431b84f6e5c72b6ee785be4fd968 (patch)
treeb476f395e7e91d67bacb6758bc84914b8711593f /library/topology
Initial commit
Diffstat (limited to 'library/topology')
-rw-r--r--library/topology/basis.tex45
-rw-r--r--library/topology/disconnection.tex44
-rw-r--r--library/topology/preclosure.tex18
-rw-r--r--library/topology/separation.tex124
-rw-r--r--library/topology/topological-space.tex258
5 files changed, 489 insertions, 0 deletions
diff --git a/library/topology/basis.tex b/library/topology/basis.tex
new file mode 100644
index 0000000..dda187c
--- /dev/null
+++ b/library/topology/basis.tex
@@ -0,0 +1,45 @@
+\import{topology/topological-space.tex}
+
+\subsection{Topological basis}
+
+\begin{abbreviation}\label{covers}
+ $C$ covers $X$ iff
+ for all $x\in X$ there exists $U\in C$ such that $x\in U$.
+\end{abbreviation}
+
+\begin{proposition}\label{covers_unions_intro}
+ Suppose $C$ covers $X$.
+ Then $X\subseteq\unions{C}$.
+\end{proposition}
+
+\begin{proposition}\label{covers_unions_elim}
+ Suppose $X\subseteq\unions{C}$.
+ Then $C$ covers $X$.
+\end{proposition}
+
+% Also called "prebase", "subbasis", or "subbase". We prefer "pre-" or "quasi-"
+% for consistency when handling generalizations, even if "subbasis" is more common.
+\begin{abbreviation}\label{topological_prebasis}
+ $B$ is a topological prebasis for $X$ iff $\unions{B} = X$.
+\end{abbreviation}
+
+\begin{proposition}\label{topological_prebasis_iff_covering_family}
+ $B$ is a topological prebasis for $X$ iff
+ $B$ is a family of subsets of $X$ and $B$ covers $X$.
+\end{proposition}
+\begin{proof}
+ If $B$ is a family of subsets of $X$ and $B$ covers $X$,
+ then $\unions{B} = X$
+ by \cref{subseteq_antisymmetric,unions_family,covers_unions_intro}.
+ If $\unions{B} = X$,
+ then $B$ is a family of subsets of $X$ and $B$ covers $X$
+ by \cref{covers_unions_intro,subseteq_refl,covers_unions_elim}.
+\end{proof}
+
+% Also called "base of topology".
+\begin{definition}\label{topological_basis}
+ $B$ is a topological basis for $X$ iff
+ $B$ is a topological prebasis for $X$ and
+ for all $U, V, x$ such that $U, V\in B$ and $x\in U,V$
+ there exists $W\in B$ such that $x\in W\subseteq U, V$.
+\end{definition}
diff --git a/library/topology/disconnection.tex b/library/topology/disconnection.tex
new file mode 100644
index 0000000..e3730f3
--- /dev/null
+++ b/library/topology/disconnection.tex
@@ -0,0 +1,44 @@
+\import{set.tex}
+\import{set/bipartition.tex}
+\import{topology/topological-space.tex}
+
+\subsection{Disconnections}
+
+\begin{definition}\label{disconnections}
+ $\disconnections{X} = \{ p\in\bipartitions{\carrier[X]} \mid \text{$\fst{p},\snd{p}\in\opens[X]$} \}$.
+\end{definition}
+
+\begin{abbreviation}\label{is_a_disconnection}
+ $D$ is a disconnection of $X$ iff $D\in\disconnections{X}$.
+\end{abbreviation}
+
+\begin{definition}\label{disconnected}
+ $X$ is disconnected iff there exist $U, V\in\opens[X]$
+ such that $\carrier[X]$ is partitioned by $U$ and $V$.
+\end{definition}
+
+\begin{proposition}\label{disconnection_from_disconnected}
+ Let $X$ be a topological space.
+ Suppose $X$ is disconnected.
+ Then there exists a disconnection of $X$.
+\end{proposition}
+\begin{proof}
+ Take $U, V\in\opens[X]$ such that $\carrier[X]$ is partitioned by $U$ and $V$
+ by \cref{disconnected}.
+ Then $(U, V)$ is a bipartition of $\carrier[X]$.
+ Thus $(U, V)$ is a disconnection of $X$ by \cref{disconnections,times_proj_elim,times_tuple_intro}.
+\end{proof}
+
+\begin{proposition}\label{disconnected_from_disconnection}
+ Let $X$ be a topological space.
+ Let $D$ be a disconnection of $X$.
+ Then $X$ is disconnected.
+\end{proposition}
+\begin{proof}
+ $\fst{D}, \snd{D}\in\opens[X]$.
+ $\carrier[X]$ is partitioned by $\fst{D}$ and $\snd{D}$.
+\end{proof}
+
+\begin{abbreviation}\label{connected}
+ $X$ is connected iff $X$ is not disconnected.
+\end{abbreviation}
diff --git a/library/topology/preclosure.tex b/library/topology/preclosure.tex
new file mode 100644
index 0000000..6c104be
--- /dev/null
+++ b/library/topology/preclosure.tex
@@ -0,0 +1,18 @@
+\import{set.tex}
+
+\section{Preclosure spaces}
+
+
+\begin{struct}
+ A preclosure space $X$ is a onesorted structure equipped with
+ \begin{enumerate}
+ \item $\cl$
+ \end{enumerate}
+ such that
+ \begin{enumerate}
+ \item For all $Y\subseteq X$ we have $\cl(Y)\subseteq X$.
+ \item $\cl(\emptyset) = \emptyset$.
+ \item For all $A$ we have $A\subseteq \cl(A)$.
+ \item For all $A, B$ we have $\cl(A\union B) = \cl(A) \union \cl(B)$.
+ \end{enumerate}
+\end{struct}
diff --git a/library/topology/separation.tex b/library/topology/separation.tex
new file mode 100644
index 0000000..f70cb50
--- /dev/null
+++ b/library/topology/separation.tex
@@ -0,0 +1,124 @@
+\import{topology/topological-space.tex}
+
+
+% T0 separation
+\begin{definition}\label{is_kolmogorov}
+ $X$ is Kolmogorov iff
+ for all $x,y\in\carrier[X]$ such that $x\neq y$
+ there exist $U\in\opens[X]$ such that
+ $x\in U\not\ni y$ or $x\notin U\ni y$.
+\end{definition}
+
+\begin{abbreviation}\label{kolmogorov_space}
+ $X$ is a Kolmogorov space iff $X$ is a topological space and
+ $X$ is Kolmogorov.
+\end{abbreviation}
+
+\begin{abbreviation}\label{teezero}
+ $X$ is \teezero\ iff $X$ is Kolmogorov.
+\end{abbreviation}
+
+\begin{abbreviation}\label{teezero_space}
+ $X$ is a \teezero-space iff $X$ is a Kolmogorov space.
+\end{abbreviation}
+
+\begin{proposition}\label{kolmogorov_implies_kolmogorov_for_closeds}
+ Suppose $X$ is a Kolmogorov space.
+ Let $x,y\in\carrier[X]$.
+ Suppose $x\neq y$.
+ Then there exist $A\in\closeds{X}$ such that
+ $x\in A\not\ni y$ or $x\notin A\ni y$.
+\end{proposition}
+\begin{proof}
+ Take $U\in\opens[X]$ such that $x\in U\not\ni y$ or $x\notin U\ni y$
+ by \cref{is_kolmogorov}.
+ Then $\carrier[X]\setminus U\in\closeds{X}$ by \cref{complement_of_open_elem_closeds}.
+ Now $x\in (\carrier[X]\setminus U)\not\ni y$ or $x\notin (\carrier[X]\setminus U)\ni y$
+ by \cref{setminus}.
+\end{proof}
+
+\begin{proposition}\label{kolmogorov_for_closeds_implies_kolmogorov}
+ Suppose for all $x,y\in\carrier[X]$ such that $x\neq y$
+ there exist $U\in\closeds{X}$ such that
+ $x\in U\not\ni y$ or $x\notin U\ni y$.
+ Then $X$ is Kolmogorov.
+\end{proposition}
+\begin{proof}
+ Follows by \cref{closeds,is_closed_in,is_kolmogorov,setminus}.
+\end{proof}
+
+\begin{proposition}\label{kolmogorov_iff_kolmogorov_for_closeds}
+ Let $X$ be a topological space.
+ $X$ is Kolmogorov iff
+ for all $x,y\in\carrier[X]$ such that $x\neq y$
+ there exist $U\in\closeds{X}$ such that
+ $x\in U\not\ni y$ or $x\notin U\ni y$.
+\end{proposition}
+\begin{proof}
+ Follows by \cref{kolmogorov_implies_kolmogorov_for_closeds,kolmogorov_for_closeds_implies_kolmogorov}.
+\end{proof}
+
+% T1 separation (Fréchet topology)
+\begin{definition}\label{teeone}
+ $X$ is \teeone\ iff
+ for all $x,y\in\carrier[X]$ such that $x\neq y$
+ there exist $U, V\in\opens[X]$ such that
+ $U\ni x\notin V$ and $V\ni y\notin U$.
+\end{definition}
+
+\begin{abbreviation}\label{teeone_space}
+ $X$ is a \teeone-space iff $X$ is a topological space and
+ $X$ is \teeone.
+\end{abbreviation}
+
+\begin{proposition}\label{teeone_implies_singletons_closed}
+ Let $X$ be a \teeone-space.
+ Then for all $x\in\carrier[X]$ we have $\{x\}$ is closed in $X$.
+\end{proposition}
+\begin{proof}
+ Omitted.
+ % TODO
+ % Choose for every y distinct from x and open subset U_y containing y but not x.
+ % The union U of all the U_y is open.
+ % {x} is the complement of U in \carrier[X].
+\end{proof}
+%
+% Conversely, if \{x\} is open, then for any y distinct from x we can use
+% X\setminus\{x\} as the open neighbourhood of y.
+
+% T2 separation
+\begin{definition}\label{is_hausdorff}
+ $X$ is Hausdorff iff
+ for all $x,y\in\carrier[X]$ such that $x\neq y$
+ there exist $U, V\in\opens[X]$ such that
+ $x\in U$ and $y\in V$ and $U$ is disjoint from $V$.
+\end{definition}
+
+\begin{abbreviation}\label{hausdorff_space}
+ $X$ is a Hausdorff space iff $X$ is a topological space and
+ $X$ is Hausdorff.
+\end{abbreviation}
+
+\begin{abbreviation}\label{teetwo}
+ $X$ is \teetwo\ iff $X$ is Hausdorff.
+\end{abbreviation}
+
+\begin{abbreviation}\label{teetwo_space}
+ $X$ is a \teetwo-space iff $X$ is a Hausdorff space.
+\end{abbreviation}
+
+\begin{proposition}\label{teeone_space_is_teezero_space}
+ Let $X$ be a \teeone-space.
+ Then $X$ is a \teezero-space.
+\end{proposition}
+\begin{proof}
+ Follows by \cref{is_kolmogorov,teeone}.
+\end{proof}
+
+\begin{proposition}\label{teetwo_space_is_teeone_space}
+ Let $X$ be a \teetwo-space.
+ Then $X$ is a \teeone-space.
+\end{proposition}
+\begin{proof}
+ Omitted. % TODO
+\end{proof}
diff --git a/library/topology/topological-space.tex b/library/topology/topological-space.tex
new file mode 100644
index 0000000..e467d48
--- /dev/null
+++ b/library/topology/topological-space.tex
@@ -0,0 +1,258 @@
+\import{set.tex}
+\import{set/powerset.tex}
+
+\section{Topological spaces}
+
+\begin{struct}\label{topological_space}
+ A topological space $X$ is a onesorted structure equipped with
+ \begin{enumerate}
+ \item $\opens$
+ \end{enumerate}
+ such that
+ \begin{enumerate}
+ \item\label{opens_type} $\opens[X]$ is a family of subsets of $\carrier[X]$.
+ \item\label{emptyset_open} $\emptyset\in\opens[X]$.
+ \item\label{carrier_open} $\carrier[X]\in\opens[X]$.
+ \item\label{opens_inter} For all $A, B\in \opens[X]$ we have $A\inter B\in\opens[X]$.
+ \item\label{opens_unions} For all $F\subseteq \opens[X]$ we have $\unions{F}\in\opens[X]$.
+ \end{enumerate}
+\end{struct}
+
+\begin{abbreviation}\label{is_open_in}
+ $U$ is open iff $U\in\opens$.
+\end{abbreviation}
+
+\begin{abbreviation}\label{is_open}
+ $U$ is open in $X$ iff $U\in\opens[X]$.
+\end{abbreviation}
+
+\begin{proposition}\label{union_open}
+ Let $X$ be a topological space.
+ Suppose $A$, $B$ are open.
+ Then $A\union B$ is open.
+\end{proposition}
+\begin{proof}
+ $\{A, B\}\subseteq \opens$.
+ $\unions{\{A, B\}}$ is open.
+ $\unions{\{A, B\}} = A\union B$.
+\end{proof}
+
+\begin{definition}[Interiors]\label{interiors}
+ $\interiors{A}{X} = \{ U\in\opens[X]\mid U\subseteq A\}$.
+\end{definition}
+
+\begin{definition}[Interior]\label{interior}
+ $\interior{A}{X} = \unions{\interiors{A}{X}}$.
+\end{definition}
+
+\begin{proposition}[Interior]\label{interior_elem_intro}
+ Suppose $U\in\opens[X]$ and $a\in U\subseteq A$.
+ Then $a\in\interior{A}{X}$.
+\end{proposition}
+\begin{proof}
+ $U\in\interiors{A}{X}$.
+\end{proof}
+
+\begin{proposition}[Interior]\label{interior_elem_elim}
+ Suppose $a\in\interior{A}{X}$.
+ Then there exists $U\in\opens[X]$
+ such that $a\in U\subseteq A$.
+\end{proposition}
+\begin{proof}
+ Take $U\in\interiors{A}{X}$ such that $a\in U$.
+\end{proof}
+
+\begin{proposition}[Interior]\label{interior_elem_iff}
+ $a\in\interior{A}{X}$ iff
+ there exists $U\in\opens[X]$
+ such that $a\in U\subseteq A$.
+\end{proposition}
+\begin{proof}
+ Follows by \cref{interior_elem_intro,interior_elem_elim}.
+\end{proof}
+
+\begin{proposition}\label{interior_of_open}
+ Let $X$ be a topological space.
+ Suppose $U$ is open in $X$.
+ Then $\interior{U}{X} = U$.
+\end{proposition}
+\begin{proof}
+ $U\in\interiors{U}{X}$.
+ Follows by \cref{subseteq,interior_elem_iff,neq_witness}.
+\end{proof}
+
+\begin{proposition}\label{interior_is_open}
+ Let $X$ be a topological space.
+ Then $\interior{A}{X}$ is open.
+\end{proposition}
+\begin{proof}
+ $\interiors{A}{X}\subseteq\opens[X]$.
+\end{proof}
+
+\begin{proposition}\label{interior_subseteq}
+ Then $\interior{A}{X}\subseteq A$.
+\end{proposition}
+
+\begin{proposition}\label{interior_maximal}
+ Let $X$ be a topological space.
+ Suppose $U\subseteq A\subseteq \carrier[X]$.
+ Suppose $U$ is open.
+ Then $U\subseteq \interior{A}{X}$.
+\end{proposition}
+
+\begin{proposition}\label{interior_eq_self_implies_open}
+ Let $X$ be a topological space.
+ Suppose $\interior{A}{X} = A$.
+ Then $A$ is open.
+\end{proposition}
+
+\begin{corollary}\label{interior_eq_self_iff_open}
+ Let $X$ be a topological space.
+ Then $\interior{A}{X} = A$ iff $A$ is open in $X$.
+\end{corollary}
+
+\begin{proposition}\label{interior_carrier}
+ Let $X$ be a topological space.
+ $\interior{\carrier[X]}{X} = \carrier[X]$.
+\end{proposition}
+\begin{proof}
+ $\carrier[X]\in\opens[X]$.
+ $\carrier[X]\subseteq\carrier[X]$ by \cref{subseteq_refl}.
+ Thus $\carrier[X]\in\interiors{\carrier[X]}{X}$ by \cref{interiors}.
+ Follows by set extensionality.
+\end{proof}
+
+\begin{proposition}\label{interior_type}
+ Let $X$ be a topological space.
+ Then $\interior{A}{X}\in\pow{\carrier[X]}$.
+\end{proposition}
+\begin{proof}
+ We have $\interiors{A}{X}\subseteq \pow{\carrier[X]}$.
+ % As they are open subsets of X containing A
+ %
+ Thus $\interior{A}{X}\subseteq \carrier[X]$ by \cref{interior,unions_subseteq_of_powerset_is_subseteq}.
+\end{proof}
+
+\subsection{Closed sets}
+
+\begin{definition}\label{is_closed_in}
+ $A$ is closed in $X$ iff $\carrier[X]\setminus A$ is open in $X$.
+\end{definition}
+
+\begin{abbreviation}\label{is_clopen_in}
+ $A$ is clopen in $X$ iff $A$ is open in $X$ and closed in $X$.
+\end{abbreviation}
+
+\begin{proposition}\label{emptyset_is_closed}
+ Let $X$ be a topological space.
+ Then $\emptyset$ is closed in $X$.
+\end{proposition}
+\begin{proof}
+ $\carrier[X]\setminus \emptyset = \carrier[X]$.
+\end{proof}
+
+\begin{proposition}\label{carrier_is_closed}
+ Let $X$ be a topological space.
+ Then $\emptyset$ is closed in $X$.
+\end{proposition}
+\begin{proof}
+ $\carrier[X]\setminus \carrier[X] = \emptyset$.
+\end{proof}
+
+\begin{definition}[Closed sets]\label{closeds}
+ $\closeds{X} = \{ A\in\pow{\carrier[X]}\mid\text{$A$ is closed in $X$}\}$.
+\end{definition}
+
+\begin{proposition}\label{complement_of_open_elem_closeds}
+ Let $X$ be a topological space.
+ Let $U\in\opens[X]$.
+ Then $\carrier[X]\setminus U\in\closeds{X}$.
+\end{proposition}
+\begin{proof}
+ $\carrier[X]\setminus U\in\pow{\carrier[X]}$.
+ $U\subseteq\carrier[X]$ by \cref{opens_type}.
+ Hence $\carrier[X]\setminus(\carrier[X]\setminus U) = U$ by \cref{double_relative_complement}.
+ $\carrier[X]\setminus U$ is closed in $X$.
+\end{proof}
+
+
+\begin{definition}[Closed covers]\label{closures}
+ $\closures{A}{X} = \{ D\in\pow{\carrier[X]}\mid \text{$A\subseteq D$ and $D$ is closed in $X$}\}$.
+\end{definition}
+
+\begin{definition}[Closure]\label{closure}
+ $\closure{A}{X} = \inters{\closures{A}{X}}$.
+\end{definition}
+
+\begin{proposition}\label{closure_emptyset}
+ Let $X$ be a topological space.
+ Then $\closure{\emptyset}{X} = \emptyset$.
+\end{proposition}
+\begin{proof}
+ $\emptyset\in\closures{\emptyset}{X}$.
+\end{proof}
+
+\begin{proposition}\label{closure_carrier}
+ Let $X$ be a topological space.
+ Then $\closure{\carrier[X]}{X} = \carrier[X]$.
+\end{proposition}
+\begin{proof}
+ %For all $D\in\closures{\carrier[X]}{X}$ we have $\carrier[X]\subseteq D$ by \cref{closures}.
+ %For all $D\in\closures{\carrier[X]}{X}$ we have $\carrier[X]\supseteq D$ by \cref{pow_iff,closures}.
+ %For all $D\in\closures{\carrier[X]}{X}$ we have $\carrier[X] = D$ by \cref{subseteq_antisymmetric}.
+ For all $D\in\closures{\carrier[X]}{X}$ we have $\carrier[X] = D$
+ by \cref{pow_iff,closures,subseteq_antisymmetric}.
+ Now $\carrier[X]\in\closures{\carrier[X]}{X}$.
+ Thus $\closures{\carrier[X]}{X} = \{\carrier[X]\}$
+ by \cref{singleton_iff_inhabited_subsingleton}.
+ Follows by \cref{inters_singleton,closure}.
+\end{proof}
+
+
+\begin{proposition}%[Complement of interior equals closure of complement]
+\label{complement_interior_eq_closure_complement}
+ $\carrier[X]\setminus\interior{A}{X} = \closure{(\carrier[X]\setminus A)}{X}$.
+\end{proposition}
+\begin{proof}
+ Omitted. % Use general De Morgan's Law in Pow|X|
+\end{proof}
+
+\begin{definition}[Frontier]\label{frontier}
+ $\frontier{A}{X} = \closure{A}{X}\setminus\interior{A}{X}$.
+\end{definition}
+
+
+
+\begin{proposition}%[Frontier as intersection of closures]
+\label{frontier_as_inter}
+ $\frontier{A}{X} = \closure{A}{X} \inter \closure{(\carrier[X]\setminus A)}{X}$.
+\end{proposition}
+\begin{proof}
+ % TODO
+ Omitted.
+ %$\frontier{A}{X} = \closure{A}{X}\setminus\interior{A}{X}$. % by frontier (definition)
+ %$\closure{A}{X}\setminus\interior{A}{X} = \closure{A}{X}\inter(\carrier[X]\setminus\interior{A}{X})$. % by setminus_eq_inter_complement
+ %$\closure{A}{X}\inter(\carrier[X]\setminus\interior{A}{X}) = \closure{A}{X} \inter \closure{(\carrier[X]\setminus A)}{X}$. % by complement_interior_eq_closure_complement
+\end{proof}
+
+\begin{proposition}\label{frontier_of_emptyset}
+ Let $X$ be a topological space.
+ Then $\frontier{\emptyset}{X} = \emptyset$.
+\end{proposition}
+\begin{proof}
+ Follows by set extensionality.
+\end{proof}
+
+\begin{proposition}\label{frontier_of_carrier}
+ Let $X$ be a topological space.
+ Then $\frontier{\carrier[X]}{X} = \emptyset$.
+\end{proposition}
+\begin{proof}
+ $\frontier{\carrier[X]}{X} = \carrier[X]\setminus\carrier[X]$
+ by \cref{frontier,interior_carrier,closure_carrier}.
+ Follows by \cref{setminus_self}.
+\end{proof}
+
+\begin{definition}\label{neighbourhoods}
+ $\neighbourhoods{x}{X} = \{U\in\opens[X] \mid x\in U\}$.
+\end{definition}